
Document Number: DSP1033

Date: 2013-06-24

Version: 1.1.0b

Profile Registration Profile

IMPORTANT: This specification is not a standard. It does not necessarily reflect the views of the DMTF or all of its
members. Because this document is a Work in Progress, this specification may still change, perhaps profoundly.
This document is available for public review and comment until the stated expiration date.

This document expires on: 2013-12-23.

Target version for DMTF Standard: 1.1.0.

Provide any comments through the DMTF Feedback Portal: http://www.dmtf.org/standards/feedback

Document Type: Specification

Document Status: Work in Progress

Document Language: en-US

12

3

4

5

6

7
8

9

10

11

12

13

14

15

http://www.dmtf.org/standards/feedback

Copyright notice

Copyright © 2006-2013 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/
policies/disclosures.php.

16

17

18

19

Profile Registration Profile DSP1033

2 Work in Progress — Not a DMTF Standard Version 1.1.0b

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

CONTENTS
1 Scope .. 7
2 Normative references .. 7
3 Terms and definitions .. 7

3.1 General .. 7
4 Symbols and abbreviated terms .. 10
5 Synopsis .. 10
6 Description .. 12

6.1 DMTF class diagram .. 12
6.2 Central and scoping class concept .. 13

6.2.1 General ... 13
6.2.2 Central class methodology ... 15
6.2.3 Scoping class methodology .. 16

6.3 WBEM server requirements on CIM namespaces ... 18
6.3.1 Interop namespace ... 18
6.3.2 Implementation namespaces .. 19
6.3.3 Relationship between Interop and implementation namespaces 19
6.3.4 Cross-namespace associations .. 19

7 Implementation .. 20
7.1 Features ... 20

7.1.1 Feature: CentralClassMethodology .. 20
7.1.2 Feature: ScopingClassMethodology ... 20
7.1.3 Feature: SoftwareIdentity ... 20

7.2 Adaptations .. 21
7.2.1 Conventions .. 21
7.2.2 Adaptation: RegisteredProfile: CIM_RegisteredProfile ... 22
7.2.3 Adaptation: ElementConformsToProfile: CIM_ElementConformsToProfile 24
7.2.4 Adaptation: ScopingElement: CIM_ManagedElement ... 24
7.2.5 Adaptation: CentralElement: CIM_ManagedElement ... 25
7.2.6 Adaptation: ReferencedProfile: CIM_ReferencedProfile .. 25
7.2.7 Adaptation: ReferencedRegisteredProfile: CIM_RegisteredProfile 26
7.2.8 Adaptation: SoftwareIdentity: CIM_SoftwareIdentity .. 27
7.2.9 Adaptation: ElementSoftwareIdentity: CIM_ElementSoftwareIdentity 28

8 Use cases and state descriptions .. 29
8.1 State description: SimpleStateDescription ... 29
8.2 Use case: RetrieveProfileInformationForComputerSystem ... 34
8.3 Use case: RetrieveProfileVersionForFan ... 34
8.4 Use case: RetrieveProfileVersionForPowerSupply .. 35
8.5 Use case: AlgorithmForRetrievingProfileInformation ... 35
8.6 Use case: DetermineConformingInstances ... 37
8.7 Use case: AlgorithmForDeterminingAdvertisedProfiles ... 39

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 3

8.8 Use case: AlgorithmForDeterminingTopLevelProfiles .. 39
8.9 Use case: DetermineCentralInstancesForFan ... 40
8.10 Use case: DetermineCentralInstancesForPowerSupply .. 40
8.11 Use case: AlgorithmForDeterminingCentralInstancesOfProfile ... 41
8.12 Use case: AlgorithmForDeterminingCentralOrScoping ... 42
8.13 State description: PeerComponentProfileStateDescription ... 43
8.14 State description: ProfileComplianceHierarchyStateDescription ... 44
8.15 State description: ProfileDerivationStateDescription ... 44

Figures

Figure 1 – DMTF class diagram ... 12
Figure 2 – Central class methodology example ... 16
Figure 3 – Scoping class methodology example .. 17
Figure 4 – Simple object diagram ... 33
Figure 5 – Redundant fans object diagram .. 38
Figure 6 – Referencing component profiles object diagram ... 43
Figure 7 – Profile compliance hierarchy object diagram .. 44
Figure 8 – Object diagram for profile derivation ... 45

Tables

Table 1 – Profile references .. 11
Table 2 – Features .. 11
Table 3 – Adaptations ... 11
Table 4 – Use cases and state descriptions ... 11
Table 5 – RegisteredProfile: Element requirements ... 22
Table 6 – ElementConformsToProfile: Element requirements .. 24
Table 7 – CentralElement: Element requirements .. 25
Table 8 – ReferencedProfile: Element requirements .. 26
Table 9 – ReferencedRegisteredProfile: Element requirements .. 27
Table 10 – SoftwareIdentity: Element requirements ... 28
Table 11 – ElementSoftwareIdentity: Element requirements .. 29
Table 12 – Profiles in the SimpleStateDescription scenario ... 30
Table 13 – Adaptations in the SimpleStateDescription scenario .. 30
Table 14 – Profile related implementation parts in the SimpleStateDescription scenario 31
Table 15 – Implemented classes in the SimpleStateDescription scenario ... 31
Table 16 – Change log ... 46

20

21

22

Profile Registration Profile DSP1033

4 Work in Progress — Not a DMTF Standard Version 1.1.0b

Foreword
This document was prepared by the DMTF Architecture Working Group

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. For information about the DMTF, see http://www.dmtf.org.

Acknowledgements

DMTF acknowledges the following individuals for their contributions to this document:

• Andreas Maier, IBM (editor of this version)

• Jim Davis, WBEM Solutions

• George Ericson, EMC

• Steve Hand, Symantec

• Jon Hass, Dell Inc. (editor of prior versions)

• John Leung, Intel

• Aaron Merkin, IBM

• Khachatur Papanyan, Dell

• Christina Shaw, Hewlett-Packard Company

• Paul von Behren, Symantec

• Mike Walker, IBM

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 5

http://www.dmtf.org

Introduction
This document defines the CIM model for discovering implemented profiles in a managed environment.
The information in this document is intended to be sufficient for a provider or consumer of this data to
identify unambiguously the classes, properties, methods, and values that need to be instantiated and
manipulated.

The target audience for this specification is implementers who are writing CIM-based providers or
consumers of management interfaces that represent the components described in this document.

Document conventions

Typographical conventions

The following typographical conventions are used in this document:

• Document titles are marked in italics.

• Important terms that are used for the first time are marked in italics.

• Terms include a link to the term definition in the "Terms and definitions" clause, enabling easy
navigation to the term definition.

OCL usage conventions

Constraints in this document are specified using OCL (see OCL 2.0).

OCL statements are in monospaced font.

Deprecated material

Deprecated material is not recommended for use in new development efforts. Existing and new
implementations may use this material, but they shall move to the favored approach as soon as possible.
CIM services shall implement any deprecated elements as required by this document in order to achieve
backwards compatibility. Although CIM clients may use deprecated elements, they are directed to use the
favored elements instead.

Deprecated material should contain references to the last published version that included the deprecated
material as normative material and to a description of the favored approach.

The following typographical convention indicates deprecated material:

DEPRECATED

Deprecated material appears here.

DEPRECATED

In places where this typographical convention cannot be used (for example, tables or figures), the
"DEPRECATED" label is used alone.

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Profile Registration Profile DSP1033

6 Work in Progress — Not a DMTF Standard Version 1.1.0b

Profile Registration Profile

1 Scope
The Profile Registration profile extends the management capabilities of referencing profiles by adding the
capabilities to advertise conformance of the implementation to the referencing profiles, and to discover
instances for which conformance to the referencing profile is advertised.

2 Normative references
The following referenced documents are indispensable for the application of this document. For dated or
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies.
For references without a date or version, the latest published edition of the referenced document
(including any corrigenda or DMTF update versions) applies.

DMTF DSP0004, CIM Infrastructure Specification 2.7,
http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf

DMTF DSP0223, Generic Operations 1.0,
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf

DMTF DSP1001, Management Profile Specification Usage Guide 1.1,
http://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf

DMTF DSP1023, Software Inventory Profile 1.0,
http://www.dmtf.org/standards/published_documents/DSP1023_1.0.pdf

OMG formal/06-05-01, Object Constraint Language 2.0,
http://www.omg.org/spec/OCL/2.0/

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/livelink?func=ll&objId=4230456&objAction=browse&sort=subtype

3 Terms and definitions
In this document, some terms have a specific meaning beyond the normal English meaning. Those terms
are defined in this clause.

3.1 General

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"),
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described
in ISO/IEC Directives, Part2, Annex H. The terms in parenthesis are alternatives for the preceding term,
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that
ISO/IEC Directives, Part2, Annex H specifies additional alternatives. Occurrences of such additional
alternatives shall be interpreted in their normal English meaning in this document.

The terms "clause", "subclause", "paragraph", "annex" in this document are to be interpreted as described
in ISO/IEC Directives, Part2, Clause 5.

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 7

http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf
http://www.dmtf.org/standards/published_documents/DSP1023_1.0.pdf
http://www.omg.org/spec/OCL/2.0/
http://isotc.iso.org/livelink/livelink?func=ll&objId=4230456&objAction=browse&sort=subtype

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC
Directives, Part2, Clause 3. In this document, clauses, subclauses or annexes indicated with
"(informative)" as well as notes and examples do not contain normative content.

The terms defined in DSP0004, DSP0223, and DSP1001 apply to this document.

The following additional terms are defined in this document.

3.2
autonomous profile

a profile that addresses an autonomous and self-contained management domain. For a complete
definition, see DSP1001.

DSP1001 defines that in autonomous profiles, the central class adaptation and scoping class adaptation
are the same. Thus, autonomous profiles cannot be scoped by other profiles. With the exception of this
profile, autonomous profiles do not need to be referenced in order to be implemented, and can therefore
be implemented alone. Autonomous profiles may reference component profiles and autonomous profiles
(including themselves) and may scope component profiles. See also term "component profile".

3.3
central class adaptation
a class adaptation whose instances act as an algorithmic focal point for advertising conformance of an
implementation to a profile. For a more general definition, see DSP1001. See also term "scoping class
adaptation".

3.4
central class methodology
an algorithm for advertising profile conformance that uses the central instances of the registered profile as
an algorithmic focal point. For a complete definition, see 6.2.2. See also term "scoping class
methodology".

3.5
central element
the managed object type modeled by a central class adaptation. See also term "scoping element".

3.6
central instance
an instance of the central class adaptation. See also term "scoping instance".

3.7
component profile

a profile that addresses a subset of a management domain. For a complete definition, see DSP1001.

DSP1001 defines that in component profiles, the central class adaptation and scoping class adaptation
are not the same. Component profiles need to be scoped by one or more scoping profiles to be
implemented, and can be implemented only together with one of their scoping profiles. Component
profiles may reference autonomous profiles and component profiles (including themselves) and may
scope other component profiles. See also term "autonomous profile".

3.8
Interop namespace

a role of a CIM namespace for the purpose of providing a common and well-known place for clients to
discover modeled entities, such as the profiles to which an implementation advertises conformance. The

74

75

76
77

78

79

80

81

82

83

84

85

86

87

88
89

90

91

92
93

Profile Registration Profile DSP1033

8 Work in Progress — Not a DMTF Standard Version 1.1.0b

term is also used for namespaces that assume that role. For a complete definition, see 6.3.1. See also
term "implementation namespace".

3.9
implementation namespace

a role of a CIM namespace for the purpose of providing a place for CIM objects for which no specific
namespace requirements are defined. The term is also used for namespaces that assume that role. For a
complete definition, see 6.3.2. See also term "Interop namespace".

3.10
profile
a management profile, as defined in DSP1001.

3.11
profile conformance

conformance of an implementation to one or more profiles, such that the implementation satisfies the
rules for full implementation conformance defined in subclause 5.2.2 of DSP1001.

3.12
referenced profile
a profile that is referenced by a profile that lists it in its profile references table. For a complete definition,
see subclause 7.9.1 of DSP1001.

3.13
referencing profile
a profile that references a profile by listing it in its profile references table. For a complete definition, see
subclause 7.9.1 of DSP1001.

3.14
registered profile

a profile to which an implementation advertises conformance. Before version 1.1 of this profile, registered
profiles were termed "subject profiles" (that term is now deprecated).

3.15
scoping class adaptation
a class adaptation that acts as an algorithmic focal point for advertising conformance of an
implementation to a profile when using the scoping class methodology. For a more general definition, see
DSP1001. See also term "central class adaptation".

3.16
scoping class methodology
an algorithm for advertising profile conformance that uses the scoping instances of the registered profile
as an algorithmic focal point. For a complete definition, see 6.2.3. See also term "central class
methodology".

3.17
scoping element
the managed object type modeled by a scoping class adaptation. See also term "central element".

3.18
scoping instance

94

95
96

97

98

99

100
101

102

103

104

105

106

107
108

109

110

111

112

113

114

115

116

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 9

an instance of the scoping class adaptation. See also term "central instance".

3.19
scoping path
an association traversal path between the central class adaptation and the scoping class adaptation. For
a complete definition, see DSP1001.

3.20
scoping profile

a profile that provides a scope to a scoped profile by defining a central class adaptation that is based on
the scoping class adaptation defined in the scoped profile. For a complete definition, see DSP1001.

3.21
subject profile

DEPRECATED: The term "subject profile" has been deprecated in version 1.1 of this profile, because its
meaning as defined in this profile was different from the meaning as defined in DSP1001.

Use the term "registered profile" instead.

4 Symbols and abbreviated terms
The abbreviations defined in DSP0004, DSP0223, and DSP1001 apply to this document.

This document does not define any additional abbreviations.

5 Synopsis
Profile name: Profile Registration

Version: 1.1.0

Organization: DMTF

Abstract indicator: False

Profile type: Autonomous

Schema: DMTF CIM 2.22

Central class adaptation: RegisteredProfile

Scoping class adaptation: RegisteredProfile

The Profile Registration profile extends the management capabilities of referencing profiles by adding the
capabilities to advertise and discover conformance of the implementation to the referencing profiles.

For historical reasons, the scoping and central class adaptations of the Profile Registration profile are the
same. Thus, it is an autonomous profile. Nonetheless, it cannot be implemented on its own, but only in
context of its referencing profiles.

Table 1 identifies the profile references defined in this profile.

117

118

119

120
121

122

123
124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

Profile Registration Profile DSP1033

10 Work in Progress — Not a DMTF Standard Version 1.1.0b

Table 1 – Profile references

Profile
reference
name

Profile
name

Organi-
zation Version Relation-

ship Description

SelfPRP Profile
Registration DMTF 1.1 Mandatory Used to advertise conformance of the implementation to

this profile.

RefPRP Profile
Registration DMTF 1.1 Mandatory Used to advertise conformance of the implementation to

a profile referenced by the registered profile.

Table 2 identifies the features defined in this profile.

Table 2 – Features

Feature Requirement Description

CentralClassMethodology ConditionalExclusive See 7.1.1.

ScopingClassMethodology ConditionalExclusive See 7.1.2.

SoftwareIdentity Optional See 7.1.3.

Table 3 identifies the class adaptations defined in this profile.

Table 3 – Adaptations

Adaptation Elements Requirement Description

Instantiated, embedded and abstract adaptations
RegisteredProfile CIM_RegisteredProfile Mandatory See 7.2.2.

ElementConformsToProfile CIM_ElementConformsToProfile ConditionalExclusive See 7.2.3.

ScopingElement CIM_ManagedElement See derived adaptations See 7.2.4.

CentralElement CIM_ManagedElement See derived adaptations See 7.2.5.

ReferencedProfile CIM_ReferencedProfile ConditionalExclusive See 7.2.6.

ReferencedRegisteredProfile CIM_RegisteredProfile ConditionalExclusive See 7.2.7.

SoftwareIdentity CIM_SoftwareIdentity Conditional See 7.2.8.

ElementSoftwareIdentity CIM_ElementSoftwareIdentity Conditional See 7.2.9.

Indications and exceptions
This profile does not define any such adaptations.

Table 4 identifies the use cases and state descriptions defined in this profile.

Table 4 – Use cases and state descriptions

Name Description

State description: SimpleStateDescription See 8.1.

Use case: RetrieveProfileInformationForComputerSystem See 8.2.

Use case: RetrieveProfileVersionForFan See 8.3.

Use case: RetrieveProfileVersionForPowerSupply See 8.4.

Use case: AlgorithmForRetrievingProfileInformation See 8.5.

Use case: DetermineConformingInstances See 8.6.

Use case: AlgorithmForDeterminingAdvertisedProfiles See 8.7.

142

143

144

145

146

147

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 11

Name Description

Use case: AlgorithmForDeterminingTopLevelProfiles See 8.8.

Use case: DetermineCentralInstancesForFan See 8.9.

Use case: DetermineCentralInstancesForPowerSupply See 8.10.

Use case: AlgorithmForDeterminingCentralInstancesOfProfile See 8.11.

Use case: AlgorithmForDeterminingCentralOrScoping See 8.12.

State description: PeerComponentProfileStateDescription See 8.13.

State description: ProfileComplianceHierarchyStateDescription See 8.14.

State description: ProfileDerivationStateDescription See 8.15.

6 Description

6.1 DMTF class diagram

The DMTF class diagram (see DSP1001) in Figure 1 shows all class adaptations defined in this profile,
and relevant class adaptations from referenced profiles. Adaptation names are shown in parenthesis if
they differ from the class names without schema prefix.

Figure 1 – DMTF class diagram

148

149

150

151

152

153

Profile Registration Profile DSP1033

12 Work in Progress — Not a DMTF Standard Version 1.1.0b

Registered profiles (that is, profiles to which an implementation advertises conformance) are represented
by instances of the RegisteredProfile adaptation in the Interop namespace.

As defined in 6.3, the roles of an Interop namespace and of an implementation namespace can be
assumed by different namespaces or by the same namespace. Figure 1 shows the case of different
namespaces. If these namespaces are different, the class adaptations shown in the Interop namespace
may also be implemented in the implementation namespace (that is, they appear in both namespaces).

The RegisteredProfile class adaptation is the central and scoping class adaptation of this profile.

The central and scoping elements of the registered profile are represented by instances of the
CentralElement and ScopingElement adaptation, respectively.

If the ElementConformsToProfile adaptation is implemented, the registered profile supports the central
class methodology; otherwise, it supports the scoping class methodology. For a complete definition, see
6.2.

If the registered profile references any profiles, these referenced profiles are represented by instances of
the ReferencedRegisteredProfile class adaptation. These instances are associated via the
ReferencedProfile association adaptation to the instances of the RegisteredProfile class adaptation that
represent the referencing profile.

The referenced profiles also advertise their profile conformance through this profile.

If the registered profile is a component profile, it has a scoping profile. Conformance of an implementation
to the scoping profile is also advertised through a use of this profile. This configuration is not shown in the
diagram; the diagram only shows how this profile is used by the registered profile. A use of this profile for
advertising conformance of an implementation to the scoping profile results from the fact that the scoping
profile references this profile as well, so it is on the role of a registered profile and the diagram is simply
applied another time using that role.

An implementation that conforms to this profile can also advertise that conformance. The resulting profile
reference is named "SelfPRP" in Table 1; and that use of this profile is shown in Figure 1 as
"SelfPRP::Profile Registration". This is only possible one level deep, so that the RegisteredProfile
instance representing conformance to this profile is not subject to further advertisement.

The SoftwareIdentity and ElementSoftwareIdentity adaptations provide support for representing the
software identity of the implementation that conforms to the registered profile; they are part of the
SoftwareIdentity feature.

6.2 Central and scoping class concept

6.2.1 General

Profiles typically define constraints and behavioral requirements for more than one CIM schema class.
The usages of CIM schema classes in the context of a profile are termed adaptations (see DSP1001). For
an implementation to conform to a profile, each of the CIM elements for which the profile defines
constraints and behavioral requirements needs to conform to these constraints and behavioral
requirements. Because profiles also define which entities in the managed environment are represented
by the model entities, conformance to a profile cannot only be limited to interface conformance (see
DSP1001), but needs to include those mapping aspects as well. Therefore, an implementation conforms
to a profile, if it satisfies the rules for full implementation conformance defined in 5.2.2 of DSP1001.

This profile establishes the concepts of a central class adaptation and a scoping class adaptation that
allow a client to perform the following tasks:

• to find the CIM instances that conform to the registered profile, given the RegisteredProfile
instance representing the registered profile

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 13

• to find - for a given CIM instance - the RegisteredProfile instance (or instances) representing the
registered profile (or profiles), to which conformance is advertised

The central class adaptation of a profile acts as an algorithmic focal point for all adaptations defined by
that profile. The central class adaptation also represents the boundary for clients between using a generic
discovery mechanism and using a priori knowledge about the profile, as follows:

• Navigation between the RegisteredProfile instance representing a registered profile and its
central instances is defined in this profile with profile advertisement methodologies; these do not
require clients to have a priori knowledge about the particular profile.

• Traversal between the central instances of a registered profile and the instances of adaptations
defined by that profile requires clients to have a priori knowledge about the profile; this profile
does not define generic mechanisms for that purpose.

Implementations that conform to multiple profiles and implementations that conform to profiles and in
addition implement schema classes outside of the context of any profile deserve particular attention by
clients, when navigating the network of instances, because it is possible that instances of a particular
class conform to different profiles or to no profile. This often requires clients to have a priori knowledge
about the way these multiple profiles and schema classes have been combined in the implementation.

The scoping class adaptation of a profile is used for discovering the central instances indirectly, in cases
where there are many central instances to be expected.

In autonomous profiles, the central class adaptation and the scoping class adaptation are the same
adaptation (see DSP1001), with the same set of instances.

This profile defines two profile advertisement methodologies through which an implementation can
advertise conformance to a particular profile, and through which clients can navigate between the
RegisteredProfile instance representing the registered profile and its central instances:

• The first methodology is termed central class methodology; it is characterized by a direct
ElementConformsToProfile association adaptation between the CentralElement and the
RegisteredProfile adaptation. This means, every central instance is directly associated with the
RegisteredProfile instance representing the registered profile.

See 6.2.2 for more information about the central class methodology.

• The second methodology is termed scoping class methodology; it uses the
ElementConformsToProfile association adaptation only between the ScopingElement adaptation
of the registered profile and the RegisteredProfile adaptation of the scoping profile. As a result,
the central instances of the registered profile are not directly associated through the
ElementConformsToProfile adaptation to instances of the RegisteredProfile adaptation that
represent the registered profile.

The ScopingElement adaptation of the registered profile binds to the CentralElement adaptation
of the scoping profile, so this profile advertisement methodology basically delegates the traversal
of the ElementConformsToProfile association adaptation to the scoping profile.

This delegation may happen across multiple levels of scoping profiles, until some scoping profile
finally implements the central class methodology. It is typical (but not required) that that final
scoping profile is an autonomous profile.

See 6.2.3 for more information about the scoping class methodology.

Use of the central class and scoping class methodologies are mutually exclusive for a specific registered
profile version; exactly one of these methodologies shall be implemented.

169

170

171

172

173

174

175

176177

178

179180

181

182

183

184

185

Profile Registration Profile DSP1033

14 Work in Progress — Not a DMTF Standard Version 1.1.0b

The decision about implementing central class methodology or scoping class methodology should be left
to the implementation; that is, profiles should not require one or the other profile advertisement
methodology to be implemented.

In situations where implementations have small footprint requirements and want to reduce the number of
instances or in situations where the implementation is monolithic and only a single version of each profile
is used, the implementation may use the scoping class methodology to reduce the number of necessary
ElementConformsToProfile instances.

In situations where implementations use multiple versions of the same profile (for example, when multi-
vendor providers are integrated into a single WBEM server), the central class methodology is
recommended, because it provides unambiguous relationships through ElementConformsToProfile
instances between central instances and the RegisteredProfile instances representing the registered
profiles with their versions.

For autonomous profiles, the scoping class methodology gets reduced to become the same as the central
class methodology, because scoping element and central element are the same.

An implementation that conforms to multiple versions of a particular registered profile may use different
methodologies for each profile version, as long as the scoping class methodology is used for no more
than one of the profile versions. The reason for this restriction is that with more than one use of the
scoping class methodology, it is not possible to find out which subset of the central instances are related
to which version of the registered profile.

An example of this situation could be a system with two network interface cards, each from a different
vendor, and the parts of the overall implementation contributed by each vendor conform to different
versions of the Ethernet Port Profile. This example also shows that in multi-vendor environments, it may
be difficult to coordinate the choice of profile advertisement methodology. Using the central class
methodology puts an implementation on the safe side in multi-vendor environments.

This profile defines no mechanisms for explicitly advertising which methodology has been used. The
methodology that was used can be ascertained by testing whether a central instance of the registered
profile is referenced by an ElementConformsToProfile instance. Determining the methodology by testing
whether the RegisteredProfile instance representing the registered profile is referenced by an
ElementConformsToProfile instance only works when it is also ascertained that there is at least one
central instance of the registered profile.

6.2.2 Central class methodology

The central class profile advertisement methodology (or short: central class methodology) is based on a
straightforward approach whereby every CentralElement instance (representing the central instances of a
registered profile) is associated through ElementConformsToProfile with a RegisteredProfile instance that
represents the registered profile and version to which the profile implementation advertises conformance.

This profile advertisement methodology is straightforward because clients only need to traverse the
ElementConformsToProfile association adaptation from or to the profile's CentralElement instance to
ascertain the profiles to which the implementation advertises conformance.

Using this profile advertisement methodology is covered by the CentralClassMethodology feature.

Figure 2 is an object diagram (showing unnamed instances with their top-level class adaptation names)
that provides an example of the central class methodology of advertising profile conformance. In the
figure, the dotted line bi-directional arrows represent the ability of a client to traverse the
ElementConformsToProfile association adaptation in the following ways:

• from a central instance of the registered profile to the RegisteredProfile instance that represents
that profile. Note that a particular CIM instance can act as a central instance for more than one
profile.

186

187

188

189

190

191

192

193

194

195

196

197

198

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 15

• from a RegisteredProfile instance that represents a registered profile to the central instances of
that profile.

In both cases, the traversal of the ElementConformsToProfile adaptation typically will be across
namespaces; that is not represented in Figure 2 but is described in 6.3.4.

In Figure 2, the ComputerSystem, Fan, and Sensor adaptations are defined in respective profiles; they
are all central elements in these profiles and are therefore based on the CentralElement adaptation
defined in this profile. The RegisteredProfile instances represent these three profiles. It is furthermore
assumed that for the purposes of this example, that the Sensors profile is implemented for some system
level sensor (and not for a fan sensor).

Figure 2 – Central class methodology example

6.2.3 Scoping class methodology

The scoping class profile advertisement methodology (or short: scoping class methodology) is an
approach characterized by the use of the ElementConformsToProfile association adaptation not between
the central instances of a registered profile and a RegisteredProfile instance that represents that

199

200

201

202

203

204

Profile Registration Profile DSP1033

16 Work in Progress — Not a DMTF Standard Version 1.1.0b

registered profile, but instead by having that association adaptation at the next scoping profile that uses
the central class methodology for itself.

Using this profile advertisement methodology is part of the ScopingClassMethodology feature.

Figure 3 is an object diagram (showing unnamed instances with their top-level class adaptation names)
that provides an example of the scoping class methodology of advertising profile conformance with one
level of scoping profiles.

Figure 3 – Scoping class methodology example

In Figure 3, a client may traverse from a Fan instance to its scoping instance (the ComputerSystem
instance) through the SystemDevice association adaptation, following the scoping path defined in the
Example Fan profile. Because the ComputerSystem instance is referenced by ElementConformsToProfile
instances, the client knows that the corresponding profile has used the central class methodology, and
can now traverse ElementConformsToProfile to a RegisteredProfile instance that represents the Example
Base Server profile, version 1.0.0, which is the scoping profile of the Example Fan profile. Finally,
ReferencedProfile is traversed to a RegisteredProfile instance that represents the Example Fan profile,
version 1.0.0, to which the implementation is advertising conformance.

205

206

207

208

209

210

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 17

The client may reverse this traversal and start from the RegisteredProfile instance that represents the
Example Fan profile to get to the instance(s) of Fan.

The concept is in both cases that the client navigates up the scoping profile hierarchy to the level where a
scoping profile uses the central class methodology (as indicated by the presence of instances of the
ElementConformsToProfile association adaptation), and then traverses from the element side to the
profile side or vice versa, and then navigates down the scoping profile hierarchy the same number of
steps.

In both cases, the traversal of the ElementConformsToProfile adaptation typically will be across
namespaces; that is not represented in Figure 3 but is described in 6.3.4.

In Figure 3, the ComputerSystem, Fan, and Sensor adaptations are defined in respective profiles; they
are all central elements in these profiles and are therefore implicitly based on the CentralElement
adaptation defined in this profile. The RegisteredProfile instances represent these three profiles.

6.3 WBEM server requirements on CIM namespaces

This subclause defines the roles of Interop namespace and implementation namespace for CIM
namespaces, and related implementation requirements for WBEM servers.

Some of these concepts and requirements have a more general scope than this profile. For example, the
concept of an Interop namespace is also used by other profiles (e.g., DSP1054) or by WBEM SLP
discovery (see DSP0206). Another such example is the concept of cross-namespace associations.

6.3.1 Interop namespace

Interop namespace is a role of a CIM namespace for the purpose of providing a common and well-known
place for clients to discover modeled entities, such as the profiles to which an implementation advertises
conformance.

A WBEM server shall implement exactly one CIM namespace that assumes the role of an Interop
namespace; that namespace is also called the Interop namespace.

A WBEM server shall expose its Interop namespace by using the namespace name:

interop

DEPRECATED

A WBEM server may expose its Interop namespace using the following alternative namespace name,
instead of using the "interop" namespace name:

root/interop

The use of this alternative namespace name is not preferred and has been deprecated in version 1.1 of
this profile.

Note that clients need to be prepared to deal with any one of these two namespace names.

DEPRECATED

A WBEM server may expose its Interop namespace by using additional implementation-defined
namespace names that are not one of the namespace names described previously in this subclause. This
accommodates WBEM server implementations that support namespace alias names. The client-visible
appearance of such a WBEM server is that it exposes multiple distinct Interop namespaces, each with a
distinct set of CIM objects (where these sets are equal, except for different CIM object paths).

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

Profile Registration Profile DSP1033

18 Work in Progress — Not a DMTF Standard Version 1.1.0b

DEPRECATED

The use of leading slash (/) characters in Interop namespace names is deprecated.

Older WBEM implementations may have considered the slash separator character in a CIM object path
URI to be part of the namespace name and thus exposed the namespace name (e.g., in the Name
property of CIM_Namespace) with a leading slash character. Version 1.0 of this profile permitted a
leading slash character in the name of the Interop namespace. DSP0004 does not permit namespace
names to begin with a slash. Therefore, version 1.1 of this profile has deprecated the use of leading slash
characters in the name of the Interop namespace.

Producers of Interop namespace names should not create a leading slash character in the Interop
namespace name. Consumers of Interop namespace names shall ignore a leading slash character in
Interop namespace names when processing them (e.g., for comparison or identification purposes).

DEPRECATED

6.3.2 Implementation namespaces

Implementation namespace is a role of a CIM namespace for the purpose of providing a place for CIM
objects for which no specific namespace requirements are defined.

A WBEM server shall implement one or more CIM namespaces that assume the role of an
implementation namespace; each such namespace is also called an implementation namespace.

The names of implementation namespaces are implementation-defined.

6.3.3 Relationship between Interop and implementation namespaces

A CIM namespace of a WBEM server may play the roles of an implementation namespace and of an
Interop namespace at the same time.

Thus, a simple implementation of a WBEM server can expose a single CIM namespace that plays both
roles. Of course, that single CIM namespace needs to satisfy the requirements for its name as defined in
6.3.1.

A typical implementation of a WBEM server will expose a single Interop namespace and multiple
implementation namespaces, each of which is a distinct namespace implementation.

The part of an implementation that conforms to a particular single profile may span multiple namespaces,
including multiple implementation namespaces.

6.3.4 Cross-namespace associations

Some association adaptations defined in this profile may cross CIM namespaces (within the same WBEM
server).

Associations that cross CIM namespaces shall be instantiated in both namespaces. The rationale for this
is to support association traversal from either namespace to the other.

Each of these association instances shall have their creation class exist in the same namespace as the
association instance. The versions of these association classes in each of the two namespaces may be
different; this is needed in order to allow that the implementation namespaces within a WBEM server can
be used for objects from different versions of the CIM schema.

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 19

7 Implementation

7.1 Features

7.1.1 Feature: CentralClassMethodology

Implementing this feature for a registered profile provides support for advertising conformance of an
implementation to that registered profile using the central class methodology. For details, see 6.2.2.

The requirement level for this feature is conditional exclusive, with the following condition:

The following is NOT true:

• The ScopingClassMethodology feature is implemented.

This feature can be made available to clients at the granularity of RegisteredProfile instances.

It can be concluded that the feature is available for a RegisteredProfile instance if:

• At least one ElementConformsToProfile instance exists that references the RegisteredProfile
instance representing the registered profile. This discovery mechanism only works if at least one
central instance exists and if all implementations of the registered profile use the same
methodology.

Otherwise, it can be concluded that the feature is not available.

7.1.2 Feature: ScopingClassMethodology

Implementing this feature for a registered profile provides support for advertising conformance of an
implementation to that registered profile using the scoping class methodology. For details, see 6.2.3.

The requirement level for this feature is conditional exclusive, with the following condition:

The following is NOT true:

• The CentralClassMethodology feature is implemented.

This feature can be made available to clients at the granularity of RegisteredProfile instances.

It can be concluded that the feature is available for a RegisteredProfile instance if:

• No ElementConformsToProfile instance exists that references the RegisteredProfile instance
representing the registered profile. This discovery mechanism only works if at least one central
instance exists and if all implementations of the registered profile use the same methodology.

Otherwise, it can be concluded that the feature is not available.

7.1.3 Feature: SoftwareIdentity

Implementing this feature for a registered profile provides support for representing the software identity of
an implementation that conforms to that profile. That software identity is represented using the
SoftwareIdentity adaptation which is associated to the RegisteredProfile adaptation representing
conformance to the registered profile via the ElementSoftwareIdentity adaptation.

A particular SoftwareIdentity instance represents the software identity of one implementation and can be
related to one or more registered profiles.

A particular registered profile can have more than one software identity, each represented by a
SoftwareIdentity instance. For example, this can happen if the core functionality of a profile is in one
implementation, and a second implementation adds support for an optional feature of that profile.

248

249

250

251

252

253

254

255256

257

258

259

260

261

262

263

264265

266

267

268

269

270

271

Profile Registration Profile DSP1033

20 Work in Progress — Not a DMTF Standard Version 1.1.0b

The SoftwareIdentity and ElementSoftwareIdentity adaptations defined in this profile have been designed
to conform to the CIM_SoftwareIdentity and CIM_ElementSoftwareIdentity classes, respectively, that are
used in the Software Inventory Profile (DSP1023).

Nevertheless, the Software Identity Profile is not referenced by this profile for several reasons:

• the Software Identity Profile defines CIM_System as its scoping class, but this profile is an
autonomous profile that does not define CIM_System

• the reference circle between the Software Inventory Profile and this profile would have been
complex to handle, particularly considering the usage of this profile by itself

The disadvantage of this approach is that the conformance of this feature to the Software Identity Profile
cannot be discovered by clients. However, it is possible to reuse CIM_SoftwareIdentity instances that are
implemented as part of the Software Inventory Profile also for this profile. If that is done, note that the
SoftwareIdentity and ElementSoftwareIdentity adaptations define constraints in addition to the
CIM_SoftwareIdentity and CIM_ElementSoftwareIdentity classes that are used in the Software Inventory
Profile.

The requirement level for this feature is optional.

This feature can be made available to clients at the granularity of RegisteredProfile instances.

It can be concluded that the feature is available for a RegisteredProfile instance if:

• A SoftwareIdentity instance exists that is associated to the RegisteredProfile instance via the
ElementSoftwareIdentity association.

Otherwise, it can be concluded that the feature is not available.

7.2 Adaptations

7.2.1 Conventions

This profile defines operation requirements based on DSP0223.

For adaptations of ordinary classes and of associations, the requirements for operations are defined in
adaptation-specific subclauses of subclause 7.2.

For association traversal operation requirements that are specified only in the elements table of an
adaptation (i.e., without operation-specific subclauses), the names of the association adaptations to be
traversed are listed in the elements table.

The default initialization requirement level for property requirements is optional.

The default modification requirement level for property requirements is optional.

This profile repeats the effective values of certain Boolean qualifiers as part of property, method
parameter, or method return value requirements. The following convention is established: If the name of a
qualifier is listed, its effective value is True; if the qualifier name is not listed, its effective value is False.
The convention is applied in the following cases:

• In: indicates that the parameter is an input parameter

• Out: indicates that the parameter is an output parameter

• Key: indicates that the property is a key (that is, its value is part of the instance path)

• Required: indicates that the element value shall be non-Null

272

273

274

275

276

277

278

279280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 21

• Null OK: indicates explicitly that the element value may be Null for mandatory, conditional or
conditional exclusive properties. This information is not specified as a qualifier in the schema but
as an indicator in the profile.

7.2.2 Adaptation: RegisteredProfile: CIM_RegisteredProfile

7.2.2.1 General

This adaptation models registered profiles (that is, profiles to which an implementation advertises
conformance.

It is important to understand that this adaptation does not model "profile implementations" that could be
distinguished within an overall implementation. The overall implementation may be a mix of components
from different vendors, each of which may have implemented a profile, but these different parts are not
necessarily distinguishable within the overall implementation. Only the conformance of the overall
implementation to a profile is modeled with this adaptation.

The implementation type of this adaptation is instantiated ordinary adaptation.

The requirement level for this adaptation is mandatory.

Table 5 identifies the element requirements for this adaptation.

Table 5 – RegisteredProfile: Element requirements

Element Requirement Description

Properties
InstanceID Mandatory Key, see schema definition.

RegisteredOrganization Mandatory Required, see schema
definition.

RegisteredName Mandatory Required, see 7.2.2.2.

RegisteredVersion Mandatory Required, see schema
definition.

AdvertiseTypes Mandatory Required, see schema
definition.

OtherRegisteredOrganization Conditional See 7.2.2.3.

AdvertiseTypeDescriptions Conditional See 7.2.2.4.

Operations
GetInstance() Mandatory See DSP0223.

GetClassInstancesWithPath() Mandatory See DSP0223.

GetClassInstancePaths() Mandatory See DSP0223.

GetAssociatedInstancesWithPath() for
ElementConformsToProfile ConditionalExclusive See 7.2.2.5.

GetAssociatedInstancePaths() for
ElementConformsToProfile ConditionalExclusive See 7.2.2.6.

GetAssociatedInstancesWithPath() for ReferencedProfile ConditionalExclusive See 7.2.2.7.

GetAssociatedInstancePaths() for ReferencedProfile ConditionalExclusive See 7.2.2.8.

7.2.2.2 Property: RegisteredName

The presentation requirement level for this property is mandatory.

295

296

297

298

299

300

301

302

303

304

Profile Registration Profile DSP1033

22 Work in Progress — Not a DMTF Standard Version 1.1.0b

The value shall be the name of the registered profile.

7.2.2.3 Property: OtherRegisteredOrganization

The presentation requirement level for this property is conditional, with the following condition:

The RegisteredOrganization property can potentially have a value of 1 (Other).

7.2.2.4 Property: AdvertiseTypeDescriptions

The presentation requirement level for this property is conditional, with the following condition:

The AdvertiseTypes property can potentially have a value of 1 (Other).

7.2.2.5 Operation: GetAssociatedInstancesWithPath() for ElementConformsToProfile

For general requirements on the implementation of this operation, see DSP0223.

The requirement level for this operation is conditional exclusive, with the following condition:

The CentralClassMethodology feature is implemented.

This operation requirement applies when traversing the following association adaptations:

• ElementConformsToProfile

7.2.2.6 Operation: GetAssociatedInstancePaths() for ElementConformsToProfile

For general requirements on the implementation of this operation, see DSP0223.

The requirement level for this operation is conditional exclusive, with the following condition:

The CentralClassMethodology feature is implemented.

This operation requirement applies when traversing the following association adaptations:

• ElementConformsToProfile

7.2.2.7 Operation: GetAssociatedInstancesWithPath() for ReferencedProfile

For general requirements on the implementation of this operation, see DSP0223.

The requirement level for this operation is conditional exclusive, with the following condition:

This profile is implemented for a profile referenced by the registered profile.

This operation requirement applies when traversing the following association adaptations:

• ReferencedProfile

7.2.2.8 Operation: GetAssociatedInstancePaths() for ReferencedProfile

For general requirements on the implementation of this operation, see DSP0223.

The requirement level for this operation is conditional exclusive, with the following condition:

This profile is implemented for a profile referenced by the registered profile.

This operation requirement applies when traversing the following association adaptations:

• ReferencedProfile

305
306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 23

7.2.3 Adaptation: ElementConformsToProfile: CIM_ElementConformsToProfile

7.2.3.1 General

This adaptation models the relationship between registered profiles and their central instances.

The implementation type of this adaptation is instantiated association adaptation.

The requirement level for this adaptation is conditional exclusive, with the following condition:

The CentralClassMethodology feature is implemented.

Note that if the CentralClassMethodology feature is not implemented, traversal between RegisteredProfile
and CentralElement instances is delegated to the level of the scoping profile, as described in 6.2.

Table 6 identifies the element requirements for this adaptation.

Table 6 – ElementConformsToProfile: Element requirements

Element Requirement Description

Properties
ConformantStandard Mandatory Key, see 7.2.3.2.

ManagedElement Mandatory Key, see 7.2.3.3.

Operations
GetInstance() Mandatory See DSP0223.

7.2.3.2 Property: ConformantStandard

The presentation requirement level for this property is mandatory.

The implementation shall satisfy the following constraints for this reference property:

• Referenced instances shall be of class adaptation RegisteredProfile.

• The multiplicity of [0 .. *] defined in the schema is not further constrained.

7.2.3.3 Property: ManagedElement

The presentation requirement level for this property is mandatory.

The implementation shall satisfy the following constraints for this reference property:

• Referenced instances shall be of class adaptation CentralElement.

• The multiplicity of [0 .. *] defined in the schema is not further constrained.

7.2.4 Adaptation: ScopingElement: CIM_ManagedElement

This adaptation models scoping elements of registered profiles.

This adaptation shall be (implicitly) applied as a base adaptation to the scoping class adaptation of the
registered profile; that is, that adaptation does not need to specify this adaptation is its base adaptation,
but is still considered a derived adaptation of this adaptation.

The implementation type of this adaptation is abstract ordinary adaptation.

The requirement level for this abstract adaptation is left to be defined in its derived adaptations.

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

Profile Registration Profile DSP1033

24 Work in Progress — Not a DMTF Standard Version 1.1.0b

7.2.5 Adaptation: CentralElement: CIM_ManagedElement

7.2.5.1 General

This adaptation models central elements of registered profiles. Note that DSP1001 requires that every
DMTF profile references this profile, and requires that referencing profiles base their central class
adaptation on this adaptation.

This adaptation shall be (implicitly) applied as a base adaptation to the central class adaptation of the
registered profile; that is, that adaptation does not need to specify this adaptation is its base adaptation,
but is still considered a derived adaptation of this adaptation.

The implementation type of this adaptation is abstract ordinary adaptation.

The requirement level for this abstract adaptation is left to be defined in its derived adaptations.

Table 7 identifies the element requirements for this adaptation.

Table 7 – CentralElement: Element requirements

Element Requirement Description

Operations
GetAssociatedInstancesWithPath() for ElementConformsToProfile ConditionalExclusive See 7.2.5.2.

GetAssociatedInstancePaths() for ElementConformsToProfile ConditionalExclusive See 7.2.5.3.

7.2.5.2 Operation: GetAssociatedInstancesWithPath() for ElementConformsToProfile

For general requirements on the implementation of this operation, see DSP0223.

The requirement level for this operation is conditional exclusive, with the following condition:

The CentralClassMethodology feature is implemented.

This operation requirement applies when traversing the following association adaptations:

• ElementConformsToProfile

7.2.5.3 Operation: GetAssociatedInstancePaths() for ElementConformsToProfile

For general requirements on the implementation of this operation, see DSP0223.

The requirement level for this operation is conditional exclusive, with the following condition:

The CentralClassMethodology feature is implemented.

This operation requirement applies when traversing the following association adaptations:

• ElementConformsToProfile

7.2.6 Adaptation: ReferencedProfile: CIM_ReferencedProfile

7.2.6.1 General

This adaptation models the relationship between registered profiles and the profiles they reference.

The implementation type of this adaptation is instantiated association adaptation.

The requirement level for this adaptation is conditional exclusive, with the following condition:

The ReferencedRegisteredProfile adaptation is implemented.

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 25

Table 8 identifies the element requirements for this adaptation.

Table 8 – ReferencedProfile: Element requirements

Element Requirement Description

Properties
Antecedent Mandatory Key, see 7.2.6.2.

Dependent Mandatory Key, see 7.2.6.3.

Operations
GetInstance() Mandatory See DSP0223.

7.2.6.2 Property: Antecedent

The presentation requirement level for this property is mandatory.

The implementation shall satisfy the following constraints for this reference property:

• Referenced instances shall be of class adaptation ReferencedRegisteredProfile.

• The multiplicity of [0 .. *] defined in the schema is not further constrained.

7.2.6.3 Property: Dependent

The presentation requirement level for this property is mandatory.

The implementation shall satisfy the following constraints for this reference property:

• Referenced instances shall be of class adaptation RegisteredProfile.

• The multiplicity of [0 .. *] defined in the schema is not further constrained.

7.2.7 Adaptation: ReferencedRegisteredProfile: CIM_RegisteredProfile

7.2.7.1 General

This adaptation models referenced profiles; that is, profiles that are referenced by the registered profile
(represented by the RegisteredProfile adaptation instance). The type of profile relationship can be
"usage" or "derivation" (see DSP1001).

This adaptation and the ReferencedProfile adaptation together provide the ability to navigate the
relationships between profiles that are advertised. However, the type of relationship is not represented.

This adaptation is based on the RegisteredProfile adaptation, when applied in context of profiles that are
referenced by the registered profile (see the RefPRP profile reference).

The implementation type of this adaptation is instantiated ordinary adaptation.

The requirement level for this adaptation is conditional exclusive, with the following condition:

At least one of the following is true:

• The profile relationship type is usage, and the referenced used profile is implemented.

• The profile relationship type is derivation, the referenced base profile is implemented, and
conformance to the referenced base profile is intended to be advertised.

As a result, implemented used profiles are required to be advertised, and implemented base profiles are
optional to be advertised.

Table 9 identifies the element requirements for this adaptation.

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397398

399400

401

402

Profile Registration Profile DSP1033

26 Work in Progress — Not a DMTF Standard Version 1.1.0b

Table 9 – ReferencedRegisteredProfile: Element requirements

Element Requirement Description

Base adaptations
RefPRP::RegisteredProfile Mandatory See RefPRP::RegisteredProfile.

Operations
GetAssociatedInstancesWithPath() for ReferencedProfile ConditionalExclusive See 7.2.7.2.

GetAssociatedInstancePaths() for ReferencedProfile ConditionalExclusive See 7.2.7.3.

7.2.7.2 Operation: GetAssociatedInstancesWithPath() for ReferencedProfile

For general requirements on the implementation of this operation, see DSP0223.

The requirement level for this operation is conditional exclusive, with the following condition:

This profile is implemented for a profile referenced by the registered profile.

This operation requirement applies when traversing the following association adaptations:

• ReferencedProfile

7.2.7.3 Operation: GetAssociatedInstancePaths() for ReferencedProfile

For general requirements on the implementation of this operation, see DSP0223.

The requirement level for this operation is conditional exclusive, with the following condition:

This profile is implemented for a profile referenced by the registered profile.

This operation requirement applies when traversing the following association adaptations:

• ReferencedProfile

7.2.8 Adaptation: SoftwareIdentity: CIM_SoftwareIdentity

7.2.8.1 General

This adaptation models the software identity of implementations that conform to the registered profiles
represented by RegisteredProfile instances associated via ElementSoftwareIdentity.

Note that this adaptation has been designed to conform to the CIM_SoftwareIdentity class used in
DSP1023.

The algorithm for version comparison using the MajorVersion, MinorVersion, RevisionNumber, and
BuildNumber properties defined in DSP1023 shall be used for comparing versions of software identities
represented by instances of this adaptation.

The implementation type of this adaptation is instantiated ordinary adaptation.

The requirement level for this adaptation is conditional, with the following condition:

The SoftwareIdentity feature is implemented.

Table 10 identifies the element requirements for this adaptation.

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 27

Table 10 – SoftwareIdentity: Element requirements

Element Requirement Description

Properties
InstanceID Mandatory Key, see schema definition.

IsEntity Mandatory See schema definition.

VersionString Mandatory See schema definition.

MajorVersion Mandatory See schema definition.

MinorVersion Conditional See 7.2.8.2.

RevisionNumber Conditional See 7.2.8.3.

BuildNumber Optional See schema definition.

Operations
GetInstance() Mandatory See DSP0223.

GetClassInstancesWithPath() Mandatory See DSP0223.

GetClassInstancePaths() Mandatory See DSP0223.

GetAssociatedInstancesWithPath() for ElementSoftwareIdentity Mandatory See DSP0223.

GetAssociatedInstancePaths() for ElementSoftwareIdentity Mandatory See DSP0223.

GetReferencingInstancesWithPath() for ElementSoftwareIdentity Mandatory See DSP0223.

GetReferencingInstancePaths() for ElementSoftwareIdentity Mandatory See DSP0223.

7.2.8.2 Property: MinorVersion

The presentation requirement level for this property is conditional, with the following condition:

The RevisionNumber property is implemented.

7.2.8.3 Property: RevisionNumber

The presentation requirement level for this property is conditional, with the following condition:

The BuildNumber property is implemented.

7.2.9 Adaptation: ElementSoftwareIdentity: CIM_ElementSoftwareIdentity

7.2.9.1 General

This adaptation models the relationship between registered profiles and the software identity of their
implementation.

Note that this adaptation has been designed to conform to the CIM_ElementSoftwareIdentity class used
in DSP1023.

The implementation type of this adaptation is instantiated association adaptation.

The requirement level for this adaptation is conditional, with the following condition:

The SoftwareIdentity feature is implemented.

Table 11 identifies the element requirements for this adaptation.

424

425

426

427

428

429

430

431

432

433

434

435

Profile Registration Profile DSP1033

28 Work in Progress — Not a DMTF Standard Version 1.1.0b

Table 11 – ElementSoftwareIdentity: Element requirements

Element Requirement Description

Properties
Antecedent Mandatory Key, see 7.2.9.2.

Dependent Mandatory Key, see 7.2.9.3.

ElementSoftwareStatus Mandatory See 7.2.9.4.

Operations
GetInstance() Mandatory See DSP0223.

GetClassInstancesWithPath() Mandatory See DSP0223.

GetClassInstancePaths() Mandatory See DSP0223.

7.2.9.2 Property: Antecedent

The presentation requirement level for this property is mandatory.

The implementation shall satisfy the following constraints for this reference property:

• Referenced instances shall be of class adaptation SoftwareIdentity.

• The multiplicity of [0 .. *] defined in the schema is not further constrained.

7.2.9.3 Property: Dependent

The presentation requirement level for this property is mandatory.

The implementation shall satisfy the following constraints for this reference property:

• Referenced instances shall be of class adaptation RegisteredProfile.

• The multiplicity of [0 .. *] defined in the schema is constrained to [1 .. *].

7.2.9.4 Property: ElementSoftwareStatus

The presentation requirement level for this property is mandatory.

The implementation shall satisfy the following constraint for this property:

OCL constraint with context of a ElementSoftwareIdentity instance:

inv: self.ElementSoftwareStatus = Set { 2 /* Current */, 6 /* Installed */ }

Explanation:

The ElementSoftwareStatus array property shall contain the values 2 (Current) and 6
(Installed), in any order.

8 Use cases and state descriptions

8.1 State description: SimpleStateDescription

This state description describes a simple scenario in which an implementation conforms to three example
profiles, and advertises conformance through this profile (i.e., the Profile Registration profile). In this state
description, each implementation of this profile in turn advertises conformance to this profile itself.

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 29

Table 12 lists these four profiles, and their referenced profiles:

Table 12 – Profiles in the SimpleStateDescription scenario

Profile Profile Type Referenced Profile Profile Reference Type Profile Reference Name

Profile Registration Usage PRP

Example Fan Usage SystemFanExample Base Server Autonomous

Example Power Supply Usage SystemPowerSupply

Example Fan Component Profile Registration Usage PRP

Example Power Supply Component Profile Registration Usage PRP

Profile Registration Usage SelfPRP
Profile Registration Autonomous

Profile Registration Usage RefPRP

Table 13 lists the class adaptations defined in the three example profiles and in this profile, to the extent
they are relevant for this scenario.

Table 13 – Adaptations in the SimpleStateDescription scenario

Profile Adaptation Schema Class Base
Adaptation

Profile Reference Name (of
Base Adaptation)

ScopingElement
(implied) PRP

CentralElement
(implied) PRP

System SystemFan

Example Base
Server

ComputerSystem
(central + scoping element) CIM_ComputerSystem

System SystemPowerSupply

System
(scoping element) CIM_System ScopingElement

(implied) PRP

SystemDevice CIM_SystemDeviceExample Fan

Fan
(central element) CIM_Fan CentralElement

(implied) PRP

System
(scoping element) CIM_System ScopingElement

(implied) PRP

SystemDevice CIM_SystemDeviceExample
Power Supply

PowerSupply
(central element) CIM_PowerSupply CentralElement

(implied) PRP

ScopingElement
(implied) SelfPRP

RegisteredProfile
(central + scoping element) CIM_RegisteredProfile

CentralElement
(implied) SelfPRP

ElementConformsToProfile CIM_ElementConformsToProfile

ScopingElement CIM_ManagedElement

CentralElement CIM_ManagedElement

ReferencedProfile CIM_ReferencedProfile

Profile
Registration

ReferencedRegisteredProfile CIM_RegisteredProfile RegisteredProfile RefPRP

Table 14 lists the parts of the overall implementation that corresponds to the four profiles in the scenario,
along with their profile implementation context and implemented advertisement methodology (in this
example). The profile implementation context of each such part is defined by the profile reference in the

457

458

459

460

Profile Registration Profile DSP1033

30 Work in Progress — Not a DMTF Standard Version 1.1.0b

referencing profile, and is stated as a path of named profile references relative to the top-level Example
Base Server profile.

Table 14 – Profile related implementation parts in the SimpleStateDescription scenario

Profile Corresponding to the
Implementation Part

Profile Implementation
Context

Implemented Advertisement
Methodology

Example Base Server N/A (top-level) central class methodology

Example Fan SystemFan central class methodology

Example Power Supply SystemPowerSupply scoping class methodology

Profile Registration PRP central class methodology

Profile Registration SystemFan::PRP central class methodology

Profile Registration SystemPowerSupply::PRP central class methodology

Profile Registration (1)

PRP::SelfPRP,
SystemFan::PRP::SelfPRP,
SystemPowerSupply::PRP::
SelfPRP

central class methodology

Note (1): This implementation uses an optimization for the implementation parts that correspond to this
profile. The optimization uses one single RegisteredProfile instance to advertise conformance for all three
parts; such optimizations are described in DSP1001.

Table 15 lists the implemented classes for this scenario.

Table 15 – Implemented classes in the SimpleStateDescription scenario

Implemented Class Adaptation Profile defining the
Adaptation

Implementation Context for the
Adaptation

ComputerSystem Example Base
Server Example Base Server

ScopingElement
(implied) Profile Registration Example Base Server :: PRP

CentralElement
(implied) Profile Registration Example Base Server :: PRP

System Example Fan Example Base Server :: SystemFan

ScopingElement
(implied) Profile Registration Example Base Server :: SystemFan ::

PRP

System Example Power
Supply

Example Base Server ::
SystemPowerSupply

CIM_ComputerSystem

ScopingElement
(implied) Profile Registration Example Base Server ::

SystemPowerSupply :: PRP

CIM_SystemDevice
(for CIM_Fan) SystemDevice Example Fan Example Base Server :: SystemFan

Fan Example Fan Example Base Server :: SystemFan
CIM_Fan CentralElement

(implied) Profile Registration Example Base Server :: SystemFan ::
PRP

CIM_SystemDevice
(for CIM_PowerSupply) SystemDevice Example Power

Supply
Example Base Server ::
SystemPowerSupply

PowerSupply Example Power
Supply

Example Base Server ::
SystemPowerSupply

CIM_PowerSupply
CentralElement
(implied) Profile Registration Example Base Server ::

SystemPowerSupply :: PRP

461

462

463

464

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 31

Implemented Class Adaptation Profile defining the
Adaptation

Implementation Context for the
Adaptation

CIM_ElementConformsToProfile
(for central instances of Example
Base Server profile)

ElementConformsToProfile Profile Registration Example Base Server :: PRP

CIM_ElementConformsToProfile
(for central instances of Example
Fan profile)

ElementConformsToProfile Profile Registration Example Base Server :: SystemFan ::
PRP

CIM_ElementConformsToProfile
(for central instances of Profile
Registration profile)

ElementConformsToProfile Profile Registration

Example Base Server :: PRP ::
SelfPRP,
Example Base Server :: SystemFan ::
PRP :: SelfPRP,
Example Base Server ::
SystemPowerSupply :: PRP :: SelfPRP

CIM_RegisteredProfile
(for Example Base Server profile) RegisteredProfile Profile Registration Example Base Server :: PRP

ReferencedRegisteredProfile Profile Registration Example Base Server :: PRP
CIM_RegisteredProfile
(for Example Fan profile) RegisteredProfile Profile Registration Example Base Server :: SystemFan ::

PRP

ReferencedRegisteredProfile Profile Registration Example Base Server :: PRP
CIM_RegisteredProfile
(for Example Power Supply profile) RegisteredProfile Profile Registration Example Base Server ::

SystemPowerSupply :: PRP

ReferencedRegisteredProfile Profile Registration

Example Base Server :: PRP,
Example Base Server :: SystemFan ::
PRP,
Example Base Server ::
SystemPowerSupply :: PRP

CIM_RegisteredProfile
(for Profile Registration profile)

RegisteredProfile Profile Registration

Example Base Server :: PRP ::
SelfPRP,
Example Base Server :: SystemFan ::
PRP :: SelfPRP,
Example Base Server ::
SystemPowerSupply :: PRP :: SelfPRP

CIM_ReferencedProfile
(for profiles referenced by Example
Base Server profile)

ReferencedProfile Profile Registration Example Base Server :: PRP

CIM_ReferencedProfile
(for profiles referenced by Example
Fan profile)

ReferencedProfile Profile Registration Example Base Server :: SystemFan ::
PRP

CIM_ReferencedProfile
(for profiles referenced by Example
Power Supply profile)

ReferencedProfile Profile Registration Example Base Server ::
SystemPowerSupply :: PRP

CIM_ReferencedProfile
(for profiles referenced by Profile
Registration profile)

ReferencedProfile Profile Registration

Example Base Server :: PRP,
Example Base Server :: SystemFan ::
PRP,
Example Base Server ::
SystemPowerSupply :: PRP

Note (1): This implementation is an optimization that merges three separate implementations into one
implementation, as defined in DSP1001.

The object diagram in Figure 4 shows an example set of instances in this scenario. The implementation
follows the recommendation to separate the implementation namespace from the Interop namespace.

465

466

Profile Registration Profile DSP1033

32 Work in Progress — Not a DMTF Standard Version 1.1.0b

Figure 4 – Simple object diagram

In this scenario, the system1 instance representing a managed system, the fan1 instance representing
a fan in that system, and the ps1 instance representing a power supply in that system are all exposed in
the implementation namespace "ABCCorp".

467

468

469

470

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 33

The Interop namespace contains four instances of RegisteredProfile that advertise conformance to the
Example Base Server, Example Fan, and Example Power Supply profiles, and to the Profile Registration
profile (that is, this profile).

Profile conformance for the ps1 instance is determined through the scoping class methodology because
that instance is not referenced by any ElementConformsToProfile instances.

Profile conformance for the fan1, system1 and the four RegisteredProfile instances is determined
through the central class methodology because these instances are referenced by the ManagedElement
end of an ElementConformsToProfile association instance.

Because some of the ElementConformsToProfile instances cross namespaces, the instances of these
associations exist in both namespaces. The associated instances exist in only one of the namespaces.
For example, the ElementConformsToProfile instance between system1 and prof1 has an instance in
each of the two namespaces. In the instance in the implementation namespace, ManagedElement is a
reference to the system1 instance in the same namespace, and ConformantStandard is a cross-
namespace reference to the prof1 instance in the Interop namespace. In the instance in the Interop
namespace, ConformantStandard is a reference to the prof1 instance in the same namespace, and
ManagedElement is a cross-namespace reference to the system1 instance in the implementation
namespace. See 6.3.4 for more information about cross-namespace associations.

The scenario defined in this state description is used by some of the following use cases.

8.2 Use case: RetrieveProfileInformationForComputerSystem

For the scenario defined in the SimpleStateDescription state description, this use case describes how a
CIM client can retrieve profile information for an instance of the ComputerSystem adaptation. In that
scenario, the Example Base Server profile (defining the ComputerSystem adaptation) is an autonomous
profile.

This use case has the following preconditions:

• The instance path of a ComputerSystem instance (in the implementation namespace) is known.

• It is known that the Example Base Server profile is an autonomous profile and thus the
implementation will always use the central class methodology.

The main flow for this use case consists of the following steps:

1. Invoke the GetAssociatedInstancesWithPath() for ElementConformsToProfile operation on that
ComputerSystem instance. The resulting RegisteredProfile instances represent all profiles to
which that ComputerSystem instance conforms.

2. Iterate through the retrieved RegisteredProfile instances and inspect their
RegisteredOrganization, RegisteredName and RegisteredVersion property values, which identify
the profiles to which the ComputerSystem instance conforms.

8.3 Use case: RetrieveProfileVersionForFan

For the scenario defined in the SimpleStateDescription state description, this use case describes how a
CIM client can retrieve the version of the Example Fan profile to which an instance of the Fan adaptation
conforms. In that scenario, the Example Fan profile (defining the Fan adaptation) is a component profile
and has been implemented using the central class methodology.

This use case has the following preconditions:

• The instance path of a Fan instance (in the implementation namespace) is known.

471

472

473

474

475

476

477

478479

480481

482

483484

485486

487

488

489

490491

492

Profile Registration Profile DSP1033

34 Work in Progress — Not a DMTF Standard Version 1.1.0b

• It is known that the Example Fan profile is a component profile and that it has been implemented
using the central class methodology.

The main flow for this use case consists of the following steps:

1. Invoke the GetAssociatedInstancesWithPath operation on the given Fan instance, filtering on the
ElementConformsToProfile association. This will retrieve all RegisteredProfile instances
representing profiles to which that Fan instance conforms. In this scenario, only one
RegisteredProfile instance representing the Example Fan profile will be returned.

2. The value of its RegisteredVersion property indicates the version of the Example Fan profile to
which the given Fan instance conforms.

8.4 Use case: RetrieveProfileVersionForPowerSupply

For the scenario defined in the SimpleStateDescription state description, this use case describes how a
CIM client can retrieve the version of the Example Power Supply profile to which an instance of the
PowerSupply adaptation conforms. In that scenario, the Example Power Supply profile (defining the
PowerSupply adaptation) is a component profile and has been implemented using the scoping class
methodology.

This use case has the following preconditions:

• The instance path of a PowerSupply instance (in the implementation namespace) is known.

• It is known that the Example Power Supply profile is a component profile and that it has been
implemented using the scoping class methodology.

The main flow for this use case consists of the following steps:

1. Invoke the GetAssociatedInstancesWithPath operation on that PowerSupply instance, filtering
on the SystemDevice association. This will retrieve the (one) ComputerSystem instance that is
the scoping instance of the PowerSupply instance.

2. Invoke the GetAssociatedInstancesWithPath operation on that ComputerSystem instance,
filtering on the ElementConformsToProfile association. This will retrieve all RegisteredProfile
instances representing profiles to which that ComputerSystem instance conforms. In this
scenario, only one instance representing the Example Base Server profile will be returned.

3. Invoke the GetAssociatedInstancesWithPath() for ReferencedProfile operation on the returned
RegisteredProfile instance representing the Example Base Server profile. This will retrieve all
RegisteredProfile instances representing profiles referenced by the Example Base Server profile.
In this scenario, three instances will be returned, representing the Example Power Supply,
Example Fan, and Profile Registration profiles.

4. Iterate through these retrieved instances and select the Example Power Supply profile based on
the values of its RegisteredOrganization and RegisteredName properties. The value of its
RegisteredVersion property indicates the version of the Example Power supply profile to which
the PowerSupply instance conforms.

8.5 Use case: AlgorithmForRetrievingProfileInformation

For the general case, this use case describes the algorithm for a CIM client to determine to which profiles
a central instance of a given profile conforms, when the advertisement methodology implemented for that
profile and for its scoping profiles is not known upfront.

This use case has the following preconditions:

• The instance path of a central instance of a given profile is known.

493

494

495496

497498

499

500

501

502503

504505

506

507508

509510

511512

513514

515

516

517

518519

520

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 35

• The profile reference and scoping hierarchies between the given profile and its top-level
autonomous profile is known, including the scoping path of each of those profiles.

Note that component profiles may define scoping elements that are not the central elements of
their referencing profiles. For example, in the SimpleStateDescription scenario, the Example Fan
profile could reference an additional Example Sensors profile that defines a scoping adaptation
named System, that matches the ComputerSystem adaptation of the Example Base Server
profile.

The main flow for this use case consists of the following steps:

1. Invoke the GetAssociatedInstancesWithPath() for ElementConformsToProfile operation on the
central instance.

2. If this operation returns one or more RegisteredProfile instances, the profile has been
implemented using the central class methodology, and each (typically one) returned instance
represents a profile to which the central instance advertises conformance.

Their RegisteredOrganization, RegisteredName, and RegisteredVersion properties of the
returned instances identify these profiles.

3. If this operation returns no RegisteredProfile instances, the profile has been implemented using
the scoping class methodology; in that case, follow these steps:

• Navigate from the central instance to its scoping instance by following the scoping path
defined in the profile.

• Invoke the GetAssociatedInstancesWithPath() for ElementConformsToProfile operation
on that scoping instance. This returns the RegisteredProfile instances representing the
profiles to which the scoping instance advertises conformance.

• If this operation returns one or more RegisteredProfile instances, the profiles of the
scoping instance have been implemented using the central class methodology, and
each (typically one) returned instance represents a profiles to which the scoping
instance advertises conformance.

Go to step 4.

• If this operation returns no RegisteredProfile instances, the scoping profiles also have
been implemented using the scoping class methodology, and step 3 needs to be
recursively repeated until a scoping instance is reached that returns such instances.
After that is reached, each (typically one) returned instance represents a profile to
which the scoping instance advertises conformance.

Go to step 4.

4. At this point, at least one RegisteredProfile instances representing profiles to which the top-most
scoping instances advertise conformance.

Select the profile of those top-most profiles that directly or indirectly references the profile in
which you are interested.

5. Invoke the GetAssociatedInstancesWithPath() for ReferencedProfile operation on the
RegisteredProfile instance representing the selected top-most profile, and repeat that operation
recursively on its result, such that you traverse as many profile levels down as you had to
traverse profile levels up to the top-most profile in step 3. At each level, if more than one
instance is returned, select the profile that directly or indirectly references the profile in question.

The RegisteredProfile instances resulting from the last such traversal represent the profiles to
which the original central instance advertises conformance.

521

522

523

524525

526527

528

529530

531532

533534

535536

537

538539

540

541542

543

544545

546

547

Profile Registration Profile DSP1033

36 Work in Progress — Not a DMTF Standard Version 1.1.0b

Their RegisteredOrganization, RegisteredName, and RegisteredVersion properties of the
returned instances identify these profiles.

8.6 Use case: DetermineConformingInstances

Figure 5 is an object diagram for this use case and illustrates an implementation that conforms to the
Example Fan profile described in the SimpleStateDescription scenario. The diagram shows some
additional class adaptations defined in the Example Fan profile (compared to that scenario); schema
classes are stated in the object diagram only for these additional adaptations. The central instances of the
Example Fan profile are the two Fan instances, fan1 and fan2.

The instances of adaptations defined in a profile form a graph, where those instances can be reached by
association traversal from the central instances of that profile. Knowing the structure of this graph for the
Example Fan profile, a CIM client can navigate to all these instances starting from the central instances of
that profile, and can conclude from the existence of these instances that they conform to the Example
Fan profile.

This use case determines all instances of ordinary adaptations conforming to the Example Fan profile,
given the set of all central instances of that profile. Note that association instances conforming to the
Example Fan profile are not determined in this use case; they could be determined by using the
GetReferencingInstancesWithPath() operation.

548

549

550

551

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 37

Figure 5 – Redundant fans object diagram

This use case has the following preconditions:

• The instance paths of all central instances of the Example Fan profile are known.

• The navigation graph between instances of all adaptations defined in the Example Fan profile is
known.

The main flow for this use case consists of the following steps:

1. For each central instance and for each association adaptation defined in the Example Fan profile
that starts at the Fan adaptation, invoke the GetAssociatedInstancesWithPath() operation on
that instance, filtering on the association class and result class of that association traversal. This
will retrieve all conforming instances of ordinary classes one hop away from the central instance;
in this case, the RedundancySet instance fanrset1 and the RegisteredProfile instance
profile2.

552

553

554

555556

557558

559

560561

562

Profile Registration Profile DSP1033

38 Work in Progress — Not a DMTF Standard Version 1.1.0b

2. Repeat step 1 recursively for its resulting instances, until there are no more traversable
adaptations defined in the Example Fan profile. This will retrieve the remaining set of conforming
instances of ordinary classes; in this case, the ComputerSystem instance system1.

8.7 Use case: AlgorithmForDeterminingAdvertisedProfiles

For the general case, this use case describes the algorithm for a CIM client to determine the set of
profiles advertised by a WBEM server.

This use case has the following preconditions:

• The namespace path of the Interop namespace of the WBEM server is known.

The main flow for this use case consists of the following steps:

1. Invoke the GetClassInstancesWithPath() operation on the class of the RegisteredProfile
adaptation in the Interop namespace.

This will retrieve the RegisteredProfile instances representing all profiles to which the WBEM
server advertises conformance.

2. Iterate through these retrieved instances and inspect the values of their RegisteredOrganization,
RegisteredName, and RegisteredVersion properties, which identify these profiles.

8.8 Use case: AlgorithmForDeterminingTopLevelProfiles

For the general case, this use case describes the algorithm for a CIM client to determine the top-level
profiles advertised by a WBEM server. Top-level profiles of an implementation are those that are not
referenced by any other profiles to which the implementation conforms. This is accomplished by
determining which instances of RegisteredProfile are not antecedents for any ReferencedProfile
associations.

Typically, top-level profiles are autonomous profiles that represent the largest scoping of the CIM
representation of the target system and that reference component profiles. Note that autonomous profiles
may be referenced by other profiles.

This use case has the following preconditions:

• The namespace path of the Interop namespace of the WBEM server is known.

The main flow for this use case consists of the following steps:

1. Invoke the GetClassInstancesWithPath() operation on the class of the RegisteredProfile
adaptation in the Interop namespace.

This will retrieve the RegisteredProfile instances representing all profiles to which the WBEM
server advertises conformance.

2. Invoke the GetAssociatedInstancePaths() operation on the class of the RegisteredProfile
adaptation in the Interop namespace, filtering on the class of the ReferencedProfile association
adaptation and on source role Antecedent.

This will retrieve the instance paths of the RegisteredProfile instances representing all profiles to
which the WBEM server advertises conformance and that are referenced by other such profiles.

3. Reduce the set of all profiles (retrieved in step 1) by the set of referenced profiles (retrieved in
step 2), by means of comparing the values of their RegisteredOrganization, RegisteredName,
and RegisteredVersion properties, which identify these profiles. This results in the set of all top-
level profiles to which the WBEM server advertises conformance.

563

564

565

566

567568

569

570571

572

573574

575

576

577

578

579580

581

582583

584

585586

587

588589

590

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 39

8.9 Use case: DetermineCentralInstancesForFan

For the scenario defined in the SimpleStateDescription state description, this use case describes how a
CIM client can determine the central instances of the Example Fan profile. In that scenario, the Example
Fan profile is a component profile and has been implemented using the central class methodology.

This use case has the following preconditions:

• The instance paths of any RegisteredProfile instances advertising conformance of the
implementation to the Example Fan profile are known.

These instance paths can be determined as described in use case
AlgorithmForDeterminingAdvertisedProfiles. Note that an implementation may expose more than
one such instance.

The main flow for this use case consists of the following steps:

1. For each RegisteredProfile instance for the Example Fan profile, invoke the
GetAssociatedInstancesWithPath() for ElementConformsToProfile operation on that instance.

Because the Example Fan profile has been implemented using the central class methodology,
the central instances of the Example Fan profile are returned.

If no instances are returned, the profile may not currently have any central instances. For
example, the implementation may have chosen to represent pluggable fans as Fan instances
only if they are plugged in, and the system may have no fans plugged in, currently. Note that
older profiles require that an implementation exposes at least one central instance at any time.

2. Aggregate the central instances returned from all these invocations into one set.

This set is the set of central instances of the Example Fan profile, for this implementation.

8.10 Use case: DetermineCentralInstancesForPowerSupply

For the scenario defined in the SimpleStateDescription state description, this use case describes how a
CIM client can determine the central instances of the Example Power Supply profile. In that scenario, the
Example Power Supply profile is a component profile and has been implemented using the scoping class
methodology.

This use case has the following preconditions:

• The instance paths of any RegisteredProfile instances advertising conformance of the
implementation to the Example Power Supply profile are known.

These instance paths can be determined as described in use case
AlgorithmForDeterminingAdvertisedProfiles. Note that an implementation may expose more than
one such instance.

• It is known that the scoping profile of the profile in question is an autonomous profile (in this
scenario, the Example Base Server profile). Therefore, the central class methodology will be
supported at the level of that scoping profile.

The main flow for this use case consists of the following steps:

1. For each RegisteredProfile instance for the Example Power Supply profile, invoke the
GetAssociatedInstancesWithPath() for ReferencedProfile operation on that instance, filtering on
the class of the ReferencedProfile association adaptation and on source role Antecedent.

This will return RegisteredProfile instances for the Example Base Server profile. Aggregate the
instances returned from all these invocations into one set, and reduce the set by eliminating any
duplicate instances. Note that the resulting set may contain more than one instance.

591

592

593594

595

596

597598

599

600

601602

603

604

605

606

607608

609

610611

612

613614

615

616

Profile Registration Profile DSP1033

40 Work in Progress — Not a DMTF Standard Version 1.1.0b

2. For each instance in the resulting set, invoke the GetAssociatedInstancesWithPath() for
ElementConformsToProfile operation on that instance.

Because the Example Base Server profile is an autonomous profile, the implementation will
always use the central class methodology, and the central instances of the Example Base
Server profile (that is, ComputerSystem instances) are returned.

If no instances are returned, the Example Base Server profile may not currently have any central
instances. In this case, the Example Power Supply profile also has no central instances.

3. For each central instance of the Example Base Server profile, navigate across the scoping path
of the Example Power Supply profile to its central instances by invoking the
GetAssociatedInstancesWithPath operation on these instances, filtering on the association class
of the SystemPowerSupplyDevice adaptation, and on the target class of the
SystemPowerSupply adaptation.

Note that the filters used in this association traversal operation are tight enough to not return any
undesired Fan instances.

4. Aggregate the SystemPowerSupply instances returned from all these invocations into one set.

This set is the set of central instances of the Example Power Supply profile, for this
implementation.

8.11 Use case: AlgorithmForDeterminingCentralInstancesOfProfile

Note to reviewers: This use case may not cover all cases at this point and deserves particular review. If
we don't get it complete and specific enough, we need to remove it again or state the restrictions.

This use case describes for the general case the algorithm for a CIM client to determine the central
instances of a given profile that is advertised by a WBEM server, when the advertisement methodology
implemented for that profile and for its scoping profiles is not known upfront.

This use case has the following preconditions:

• The namespace path of the Interop namespace of the WBEM server is known.

• The given profile is known by its registered name, organization, and version.

• The profile reference hierarchy between the given profile and its top-level autonomous profile is
known, including the scoping path of each of those profiles.

The main flow for this use case consists of the following steps:

1. Invoke the GetClassInstancesWithPath() operation on the class of the RegisteredProfile
adaptation in the Interop namespace.

This will retrieve the RegisteredProfile instances (and their instance paths) representing all
profiles to which the WBEM server advertises conformance.

2. Out of the returned RegisteredProfile instances, determine the subset of instances where the
values of their RegisteredOrganization, RegisteredName, and RegisteredVersion properties
match the given profile.

If that subset contains more than one instance, repeat the following steps for each such
instance. Note that there is no requirement that multiple implementations of the same profile in a
WBEM server use the same RegisteredProfile instance for advertising conformance.

3. Navigate to the RegisteredProfile instance representing the next scoping profile that has
implemented the central class methodology, by following these steps, starting from the
RegisteredProfile instance:

617

618

619

620621

622

623624

625

626

627

628

629

630631

632

633634

635

636637

638

639640

641

642643

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 41

• Invoke the GetAssociatedInstancesWithPath() for ElementConformsToProfile operation
on the RegisteredProfile instance.

If one or more instances are returned, the profile has implemented the central class
methodology; return from this recursive invocation of step 3.

If no instances are returned, the profile has implemented the scoping class
methodology; continue with the following steps.

• Invoke the GetAssociatedInstancesWithPath() for ReferencedProfile operation on the
RegisteredProfile instance, filtering on the target role Dependent.

This will return the RegisteredProfile instances representing the referencing profiles of
the profile.

•• Select the instance representing the scoping profile of the profile, utilizing knowledge
about the profile reference tree.

• Recursively invoke step 3 for the RegisteredProfile instance representing the scoping
profile of the profile.

4. Now that you have determined an instance of RegisteredProfile that represents the next scoping
profile that uses the central class methodology . Invoke the GetAssociatedInstancesWithPath()
for ElementConformsToProfile operation on that RegisteredProfile instance. This returns the
central instances of that profile.

5. Based on knowledge about the scoping paths of each profile in the chain of referencing profiles
whose RegisteredProfile instances were traversed in the previous steps, construct the effective
scoping path between the originally given profile to the next scoping profile that uses the central
class methodology.

Each of the central instances returned in step 4, is also a scoping instance in that effective
scoping path. Navigate from each of these scoping instances across the effective scoping path
to the central instances. The resulting instances are the central instances of the originally given
profile.

8.12 Use case: AlgorithmForDeterminingCentralOrScoping

For the general case, this use case describes the algorithm for a CIM client to determine whether a profile
represented by a given RegisteredProfile instance has been implemented using the central class
methodology or the scoping class methodology.

This algorithm is based on whether ElementConformsToProfile associations are directly linked to the
given instance of RegisteredProfile.

This use case has the following preconditions:

• The instance path of a RegisteredProfile instance (in the Interop namespace) is known.

The main flow for this use case consists of the following step:

1. Invoke the GetAssociatedInstancesWithPath() for ElementConformsToProfile operation on the
given RegisteredProfile instance.

If one or more instances are returned, the central class methodology has been implemented.

If no instances are returned, the scoping class methodology has been implemented.

If the profile represented by the given RegisteredProfile instance is an autonomous profile, the
scoping class methodology also has been implemented at the same time, because for
autonomous profiles, both advertisement methodologies fall together and result in the same
implementation.

644645

646

647

648649

650

651652

653654

655656

657658

659

660

661

662

663

664665

666

667668

669

670

671

672

Profile Registration Profile DSP1033

42 Work in Progress — Not a DMTF Standard Version 1.1.0b

8.13 State description: PeerComponentProfileStateDescription

This scenario illustrates the relationship between RegisteredProfile instances for a component profile
(Example Fan) that references another component profile (Example Sensors).

In this scenario, it is assumed that the Example Sensors profile has been implemented for speed sensors
of the fans for which the Example Fan profile has been implemented. The Example Fan profile is the
scoping profile for the Example Sensors profile, and the reference to the Example Sensors profile in the
Example Fan profile is represented using ReferencedProfile instances between the respective
RegisteredProfile instances.

Figure 6 – Referencing component profiles object diagram

673

674

675

676

677

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 43

8.14 State description: ProfileComplianceHierarchyStateDescription

Figure 7 depicts the hierarchy of RegisteredProfile instances associated through ReferencedProfile
instances that would represent a modular system with a chassis manager and an included blade server
with RAID storage. This figure is provided as an example to illustrate the nature of the relationships
among the various autonomous and component profiles. Also depicted are the relationships between
component profiles.

Figure 7 – Profile compliance hierarchy object diagram

8.15 State description: ProfileDerivationStateDescription

The object diagram in Figure 8 shows an implementation that conforms to a base profile and its derived
profile.

678

679

680

681

682

Profile Registration Profile DSP1033

44 Work in Progress — Not a DMTF Standard Version 1.1.0b

Figure 8 – Object diagram for profile derivation

This diagram assumes a "Blade Server" profile defined by ACME that is derived from a "Base Server"
profile defined by DMTF.

Conformance of the implementation to the ACME "Blade Server" profile is indicated by the acme_bsp
instance, and conformance to the DMTF "Base Server" profile is indicated by the dmtf_bsp instance.

Because both of these profiles are autonomous profiles, the central and scoping path methodologies fall
together causing the ElementConformsToProfile adaptation to be implemented for both profiles.

Because both profiles define CIM_ComputerSystem as their central element, each instance of
CIM_ComputerSystem will be targeted by ElementConformsToProfile adaptations for both profiles.

Note that if conformance to a derived profile is advertised, it is not required that conformance to its base
profile is also advertised. For example, the DMTF "Base Server" profile may in turn be derived from a
DMTF "Computer System" profile which was chosen not to be advertised in this particular
implementation.

683

684

685

686

687

688

689

690

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 45

ANNEX A
(informative)

Change log

Table 16 – Change log

Version Date Description

1.0.0
(prelim) 2006-12-06 Released as a Preliminary Standard

1.0.0 2007-06-25 Released as a Final Standard

1.1.0b 2013-06-24

Released as a Work in Progress, with the following changes:

• Converted to DMTF machine readable format. This included using new concepts
from DSP1001 v1.1, such as class adaptations, features, constraints, generic
operations and DMTF adaptation diagrams. The functionality of this profile in v1.1.0
is the same as in v1.0.0, it is just now described using these new concepts.
Implementations that conformed to v1.0.0 of this profile, will also conform to v1.1.0
of this profile.

• Added ability to represent the software identity of a profile implementation, as an
optional feature.

• Deprecated the use of leading slash (/) characters in namespace names. For
producers of namespace names, tightened the permission to use a leading slash to
become a recommendation against using a leading slash.

• Deprecated the use of "root/interop" as a name for the Interop namespace.

• Removed requirements on profile authoring, since these are now covered by
DSP1001 v1.1. This caused the following v1.0 subclauses to be removed:

• "Central Class and Central Instance Identification"

• "Scoping Class and Scoping Instance Identification"

• "Association Traversal Path Existence"

• "Overlapping Profile Definitions"

• Cleaned up terms and definitions. Deprecated the term "subject profile", replacing it
with "registered profile".

• Changes in use cases and state descriptions to better communicate the important
scenarios.

• Other small clarifications.

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

Profile Registration Profile DSP1033

46 Work in Progress — Not a DMTF Standard Version 1.1.0b

Bibliography
DMTF DSP0206, WBEM SLP Template 2.0,
http://www.dmtf.org/standards/published_documents/DSP0206_2.0.0.txt

DMTF DSP1054, Indications Profile 1.2,
http://www.dmtf.org/standards/published_documents/DSP1054_1.2.pdf

706

707

DSP1033 Profile Registration Profile

Version 1.1.0b Work in Progress — Not a DMTF Standard 47

http://www.dmtf.org/standards/published_documents/DSP0206_2.0.0.txt
http://www.dmtf.org/standards/published_documents/DSP1054_1.2.pdf

	Copyright notice
	CONTENTS
	Figures
	Tables

	Foreword
	Acknowledgements

	Introduction
	Document conventions
	Typographical conventions
	OCL usage conventions
	Deprecated material

	Profile Registration Profile
	Scope
	Normative references
	Terms and definitions
	General
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Symbols and abbreviated terms
	Synopsis
	Description
	DMTF class diagram
	Central and scoping class concept
	General
	Central class methodology
	Scoping class methodology

	WBEM server requirements on CIM namespaces
	Interop namespace
	Implementation namespaces
	Relationship between Interop and implementation namespaces
	Cross-namespace associations

	Implementation
	Features
	Feature: CentralClassMethodology
	Feature: ScopingClassMethodology
	Feature: SoftwareIdentity

	Adaptations
	Conventions
	Adaptation: RegisteredProfile: CIM_RegisteredProfile
	General
	Property: RegisteredName
	Property: OtherRegisteredOrganization
	Property: AdvertiseTypeDescriptions
	Operation: GetAssociatedInstancesWithPath() for ElementConformsToProfile
	Operation: GetAssociatedInstancePaths() for ElementConformsToProfile
	Operation: GetAssociatedInstancesWithPath() for ReferencedProfile
	Operation: GetAssociatedInstancePaths() for ReferencedProfile

	Adaptation: ElementConformsToProfile: CIM_ElementConformsToProfile
	General
	Property: ConformantStandard
	Property: ManagedElement

	Adaptation: ScopingElement: CIM_ManagedElement
	Adaptation: CentralElement: CIM_ManagedElement
	General
	Operation: GetAssociatedInstancesWithPath() for ElementConformsToProfile
	Operation: GetAssociatedInstancePaths() for ElementConformsToProfile

	Adaptation: ReferencedProfile: CIM_ReferencedProfile
	General
	Property: Antecedent
	Property: Dependent

	Adaptation: ReferencedRegisteredProfile: CIM_RegisteredProfile
	General
	Operation: GetAssociatedInstancesWithPath() for ReferencedProfile
	Operation: GetAssociatedInstancePaths() for ReferencedProfile

	Adaptation: SoftwareIdentity: CIM_SoftwareIdentity
	General
	Property: MinorVersion
	Property: RevisionNumber

	Adaptation: ElementSoftwareIdentity: CIM_ElementSoftwareIdentity
	General
	Property: Antecedent
	Property: Dependent
	Property: ElementSoftwareStatus

	Use cases and state descriptions
	State description: SimpleStateDescription
	Use case: RetrieveProfileInformationForComputerSystem
	Use case: RetrieveProfileVersionForFan
	Use case: RetrieveProfileVersionForPowerSupply
	Use case: AlgorithmForRetrievingProfileInformation
	Use case: DetermineConformingInstances
	Use case: AlgorithmForDeterminingAdvertisedProfiles
	Use case: AlgorithmForDeterminingTopLevelProfiles
	Use case: DetermineCentralInstancesForFan
	Use case: DetermineCentralInstancesForPowerSupply
	Use case: AlgorithmForDeterminingCentralInstancesOfProfile
	Use case: AlgorithmForDeterminingCentralOrScoping
	State description: PeerComponentProfileStateDescription
	State description: ProfileComplianceHierarchyStateDescription
	State description: ProfileDerivationStateDescription

	(informative)Change log
	Bibliography

