
 1

2

3

4

5

6

7

8

9

10

Document Number: DSP0240

Date: 2009-04-23

Version: 1.0.0

Platform Level Data Model (PLDM) Base
Specification

Document Type: Specification

Document Status: DMTF Standard

Document Language: E

Platform Level Data Model (PLDM) Base Specification DSP0240

2 DMTF Standard Version 1.0.0

Copyright notice 11

Copyright © 2008, 2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 12

13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29

30
31

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php. 32

33

http://www.dmtf.org/about/policies/disclosures.php

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 3

CONTENTS 34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64

65
66
67

68

69
70
71
72
73
74

Foreword ... 5
Introduction ... 6
1 Scope .. 7
2 Normative References... 7

2.1 Approved References ... 7
2.2 Other References.. 7

3 Terms and Definitions.. 8
3.1 Requirement Terms and Definitions ... 8
3.2 PLDM Terms and Definitions.. 9

4 Symbols and Abbreviated Terms... 14
5 Conventions .. 15

5.1 Reserved and Unassigned Values ... 15
5.2 Byte Ordering.. 15
5.3 PLDM Data Types... 15
5.4 UUID ... 18
5.5 Ver32 Encoding .. 18
5.6 Notations... 19

6 PLDM Base Protocol ... 19
6.1 PLDM Message Fields.. 20
6.2 Generic PLDM Completion Codes (PLDM_BASE_CODES).. 21
6.3 Concurrent PLDM Command Processing... 22

7 PLDM Messaging Control and Discovery Commands.. 24
7.1 PLDM Terminus .. 24
7.2 GetPLDMVersion .. 25
7.3 GetPLDMTypes .. 27
7.4 GetPLDMCommands.. 27

8 PLDM Messaging Control and Discovery Examples .. 28
ANNEX A (Informative) Change Log... 31

Figures

Figure 1 – Generic PLDM Message Fields ... 20
Figure 2 – Example of Multipart PLDM Version Data Transfer Using the GetPLDMVersion Command ... 29
Figure 3 – PLDM Discovery Command Example ... 30

Tables

Table 1 – PLDM Data Types... 15
Table 2 – Example UUID Format.. 18
Table 3 – PLDM Message Common Fields .. 20
Table 4 – Generic PLDM Completion Codes (PLDM_BASE_CODES).. 22
Table 5 – Timing Specifications for PLDM Messages .. 23
Table 6 – PLDM Messaging Control and Discovery Command Codes.. 24

Platform Level Data Model (PLDM) Base Specification DSP0240

4 DMTF Standard Version 1.0.0

Table 7 – SetTID Command Format... 25 75
76
77
78
79
80

Table 8 – GetTID Command Format .. 25
Table 9 – GetPLDMVersion Request and Response Message Format ... 26
Table 10 – PLDM Representation of PLDMVersionData.. 26
Table 11 – GetPLDMTypes Request and Response Message Format ... 27
Table 12 – GetPLDMCommands Request and Response Message Format... 28

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 5

Foreword 81

82
83

84
85

The Platform Level Data Model (PLDM) Base Specification (DSP0240) was prepared by the Platform
Management Components Intercommunications (PMCI) Working Group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability.

Platform Level Data Model (PLDM) Base Specification DSP0240

6 DMTF Standard Version 1.0.0

Introduction 86

87
88
89
90
91
92
93

This document describes base protocol elements of the Platform Level Data Model (PLDM) for the
purpose of supporting platform-level data models and platform functions in a platform management
subsystem. PLDM is designed to be an effective interface and data model that provides efficient access
to low-level platform inventory, monitoring, control, event, and data/parameters transfer functions. For
example, temperature, voltage, or fan sensors can have a PLDM representation that can be used to
monitor and control the platform using a set of PLDM messages. PLDM defines data representations and
commands that abstract the platform management hardware.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 7

Platform Level Data Model (PLDM) Base Specification 94

95

96
97
98
99

100

101

102

103
104

105

106
107
108

109

110

1 Scope
This specification describes base protocol elements of the Platform Level Data Model (PLDM) for the
purpose of supporting platform-level data models and platform functions in a platform management
subsystem. PLDM defines data representations and commands that abstract the platform management
hardware.

This specification defines the following elements:

• the base Platform Level Data Model (PLDM) for various platform functions

• a common PLDM message format to support platform functions using PLDM

The PLDM message common fields support the identification of payload type, message, PLDM type, and
PLDM command/completion codes.

2 Normative References
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

2.1 Approved References

DMTF DSP0004, CIM Infrastructure Specification 2.5,
http://www.dmtf.org/standards/published_documents/DSP0004_2.5.0.pdf 111

112 DMTF DSP0241, Platform Level Data Model (PLDM) over MCTP Binding Specification,
http://www.dmtf.org/standards/published_documents/DSP0241_1.0.0.pdf 113

114 DMTF DSP0245, Platform Level Data Model (PLDM) IDs and Codes,
http://www.dmtf.org/standards/published_documents/DSP0245_1.0.0.pdf 115

116 IETF RFC4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005
http://www.ietf.org/rfc/rfc4122.txt 117

118 ANSI/IEEE Standard 754, Standard for Binary Floating Point Arithmetic,
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=1316 119

120

121

2.2 Other References

Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba, Advanced Configuration and Power Interface
Specification 3.0, ACPI, September 2, 2004, http://www.acpi.info/DOWNLOADS/ACPIspec30.zip 122

123 Intel, Hewlett-Packard, NEC, and Dell, Intelligent Platform Management Interface Specification: Second
Generation 2.0, IPMI, 2004, ftp://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0markup.pdf 124

http://www.dmtf.org/standards/published_documents/DSP0004_2.5.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0241_1.0.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0245_1.0.0.pdf
http://www.ietf.org/rfc/rfc4122.txt
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=1316
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=1316
http://www.acpi.info/DOWNLOADS/ACPIspec30.zip
ftp://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0markup.pdf

Platform Level Data Model (PLDM) Base Specification DSP0240

8 DMTF Standard Version 1.0.0

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 125
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 126

127 OMG, Unified Modeling Language (UML) from the Open Management Group (OMG),
http://www.uml.org/ 128

129

130

131

132

134
135

137
138

140
141
142

144
145
146

148
149

151
152

154
155

157
158
159

161
162
163

3 Terms and Definitions
For the purposes of this document, the following terms and definitions apply.

3.1 Requirement Terms and Definitions

This clause defines key phrases and words that denote requirement levels in this specification.

3.1.1 133
can
used for statements of possibility and capability, whether material, physical, or causal

3.1.2 136
cannot
used for statements of possibility and capability, whether material, physical or causal

3.1.3 139
conditional
indicates requirements to be followed strictly to conform to the document when the specified conditions
are met

3.1.4 143
mandatory
indicates requirements to be followed strictly to conform to the document and from which no deviation is
permitted

3.1.5 147
may
indicates a course of action permissible within the limits of the document

3.1.6 150
need not
indicates a course of action permissible within the limits of the document

3.1.7 153
optional
indicates a course of action permissible within the limits of the document

3.1.8 156
shall
indicates requirements to be followed strictly to conform to the document and from which no deviation is
permitted

3.1.9 160
shall not
indicates requirements to be followed strictly to conform to the document and from which no deviation is
permitted

http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.uml.org/

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 9

3.1.10 164
should 165

166
167

169
170

171

172

174
175
176
177
178
179

181
182
183
184
185
186
187
188
189
190

192
193
194

196
197
198

200
201
202

204
205
206
207

indicates that among several possibilities, one is recommended as particularly suitable, without
mentioning or excluding others, or that a certain course of action is preferred but not necessarily required

3.1.11 168
should not
indicates that a certain possibility or course of action is deprecated but not prohibited

3.2 PLDM Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

3.1 173
baseboard management controller
BMC
a term coined by the IPMI specifications for the main management controller in an IPMI-based platform
management subsystem. Also sometimes used as a generic name for a motherboard-resident
management controller that provides motherboard-specific hardware monitoring and control functions for
the platform management subsystem.

3.2 180
binary-coded decimal
BCD
indicates a particular binary encoding for decimal numbers where each four bits (nibble) in a binary
number is used to represent a single decimal digit, and with the least significant four bits of the binary
number corresponding to the least significant decimal digit
The binary values 0000b through 1001b represent decimal values 0 through 9, respectively. For
example, with BCD encoding a byte can represent a two-digit decimal number where the most significant
nibble (bits 7:4) of the byte contains the encoding for the most significant decimal digit and the least
significant nibble (bits 3:0) contains the encoding for the least significant decimal digit (for example,
0010_1001b (0x29) in BCD encoding corresponds to the decimal number 29).

3.3 191
bridge
generically, the circuitry and logic that connect one computer bus or interconnect to another, allowing an
agent on one to access the other

3.4 195
bus
a physical addressing domain shared between one or more platform components that share a common
physical layer address space

3.5 199
byte
an 8-bit quantity. Also referred to as an octet.
NOTE: PLDM specifications shall use the term byte, not octet.

3.6 203
Common Information Model
CIM
the schema of the overall managed environment
It is divided into a core, model, common model, and extended schemas. For more information, see
DSP0004. 208

Platform Level Data Model (PLDM) Base Specification DSP0240

10 DMTF Standard Version 1.0.0

3.7 209
endpoint 210
see MCTP endpoint 211

213
214

3.8 212
endpoint ID
EID
see MCTP endpoint 215

217
218

3.9 216
Globally Unique Identifier
GUID
see UUID 219

221
222
223

225
226

228
229
230
231
232
233

235
236
237
238

240
241
242
243

245
246
247
248

250
251
252
253

3.10 220
Inter-Integrated Circuit
I2C
a multiple-master, two-wire, serial bus originally developed by Philips Semiconductor

3.11 224
idempotent command
a command that has the same effect for repeated applications of the same command

3.12 227
intelligent management device
IMD
a management device that is typically implemented using a microcontroller and accessed through a
messaging protocol
Management parameter access provided by an IMD is typically accomplished using an abstracted
interface and data model rather than through direct "register-level" access.

3.13 234
Intelligent Platform Management Interface
IPMI
a set of specifications defining interfaces and protocols originally developed for server platform
management by the IPMI Promoters Group: Intel, Dell, HP, and NEC

3.14 239
Manageability Access Point
MAP
a collection of services of a system that provides management in accordance to CIM profiles and
management protocol specifications published under the DMTF

3.15 244
managed entity
the physical or logical entity that is being managed through management parameters. Examples of
physical entities include fans, processors, power supplies, circuit cards, chassis, and so on. Examples of
logical entities include virtual processors, cooling domains, system security states, and so on.

3.16 249
Management Component Transport Protocol
MCTP
a media-independent transport protocol that was designed for intercommunication of low-level
management messages within a platform management subsystem

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 11

3.17 254
management controller 255

256
257
258
259
260
261
262
263

265
266
267
268
269
270
271
272

274
275
276
277
278

280
281
282
283
284

286
287
288
289
290

292
293
294

296

a microcontroller or processor that aggregates management parameters from one or more management
devices and makes access to those parameters available to local or remote software, or to other
management controllers, through one or more management data models
Management controllers may also interpret and process management-related data, and initiate
management-related actions on management devices. While a native data model is defined for PMCI, it is
designed to be capable of supporting other data models, such as CIM, IPMI, and vendor-specific data
models. The microcontroller or processor that serves as a management controller can also incorporate
the functions of a management device.

3.18 264
management device
any physical device that provides protocol terminus for accessing one or more management
parameters
A management device responds to management requests, but it does not initiate or aggregate
management operations except in conjunction with a management controller (that is, it is a satellite
device that is subsidiary to one or more management controllers). An example of a simple management
device would be a temperature sensor chip. Another example would be a management controller that has
I/O pins or built-in analog-to-digital converters that monitor state and voltages for a managed entity.

3.19 273
management parameter
a particular datum representing a characteristic, capability, status, or control point associated with a
managed entity
Example management parameters include temperature, speed, volts, on/off, link state, uncorrectable
error count, device power state, and so on.

3.20 279
MCTP bridge
an MCTP endpoint that can route MCTP messages (that are not destined for itself) that it receives on one
interconnect to another without interpreting them
The ingress and egress media at the bridge may be either homogeneous or heterogeneous. Also referred
to in this document as a "bridge".

3.21 285
MCTP bus owner
the entity that is responsible for MCTP EID assignment or translation on the buses of which it is a master
The MCTP bus owner may also be responsible for physical address assignment. For example, for SMBus
bus segments, the MCTP bus owner is also the ARP master. This means the bus owner assigns dynamic
SMBus addresses to devices that require it.

3.22 291
MCTP endpoint
a terminus or origin of an MCTP packet or message
The MCTP endpoint is identified by a value called the MCTP endpoint ID, or EID.

3.23 295
message
see PLDM message 297

299
300

3.24 298
message body
the portion of a PLDM message that carries the PLDM Type-specific data associated with the message

Platform Level Data Model (PLDM) Base Specification DSP0240

12 DMTF Standard Version 1.0.0

3.25 301
message originator 302

303

305
306
307

309
310

312
313

315
316
317
318
319

321
322
323

325
326
327
328
329
330
331

333
334
335
336

338
339

341
342
343
344

the original transmitter (source) of a message targeted to a particular PLDM terminus

3.26 304
most significant byte
MSB
the highest order byte in a number consisting of multiple bytes

3.27 308
non-idempotent command
a command that is not an idempotent command

3.28 311
nibble
the computer term for a four-bit aggregation, or half of a byte

3.29 314
payload
the information-bearing fields of a message
These fields are separate from the fields and elements (such as address fields, framing bits, checksums,
and so on) that are used to transport the message from one point to another. In some instances, a given
field may be both a payload field and a transport field.

3.30 320
physical transport binding
refers to specifications that define how a base messaging protocol is implemented on a particular physical
transport type and medium, such as SMBus/I2C, PCI Express™ Vendor Defined Messaging, and so on

3.31 324
Platform Level Data Model
PLDM
an internal-facing low-level data model that is designed to be an effective data/control source for mapping
under the Common Information Model (CIM)
PLDM defines data structures and commands that abstract platform management subsystem
components. PLDM supports a Type field to distinguish various types of messages and group them
together based on the functions.

3.32 332
PLDM command
a command defined under the PLDM Type that is used for PLDM communications (for example,
commands to control BIOS configuration and attributes transfer, perform SMBIOS data transfer, and
monitor and control sensors)

3.33 337
PLDM message
a unit of communication based on the PLDM Type that is used for PLDM communications

3.34 340
PLDM message payload
a portion of the message body of a PLDM message
This portion of the message is separate from those fields and elements that are used to identify the
payload type, message, PLDM Type, and PLDM command/completion codes.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 13

3.35 345
PLDM request 346

347

349
350
351

353
354

356
357
358
359

361
362

364
365
366
367
368
369

371
372
373
374

376
377
378
379
380
381

Same as PLDM command. See 3.32.

3.36 348
PLDM request message
a message that is sent to a PLDM terminus to request a specific PLDM operation
A PLDM request message is acknowledged with a corresponding response message.

3.37 352
PLDM response
a response to a specific PLDM request

3.38 355
PLDM response message
a message that is sent in response to a specific PLDM request message
This message includes a "Completion Code" field that indicates whether the response completed
normally.

3.39 360
PLDM terminus
identifies a set of resources within the recipient endpoint that is handling a particular PLDM message

3.40 363
Platform Management Component Intercommunications
PMCI
the name of a working group under the Distributed Management Task Force that is chartered to define
standardized communication protocols, low-level data models, and transport definitions that support
communications with and between management controllers and management devices that form a
platform management subsystem within a managed computer system

3.41 370
point-to-point
refers to the case where only two physical communication devices are interconnected through a physical
communication medium
The devices may be in a master and slave relationship, or the devices could be peers.

3.42 375
Universally Unique Identifier
UUID
an identifier originally standardized by the Open Software Foundation (OSF) as part of the Distributed
Computing Environment (DCE). UUIDs are created using a set of algorithms that enables them to be
independently generated by different parties without requiring that the parties coordinate to ensure that
generated IDs do not overlap
In this specification, RFC4122 is used as the base specification for describing the format and generation
of UUIDs. This identifier is also sometimes referred to as a globally unique identifier (GUID).

382
383

Platform Level Data Model (PLDM) Base Specification DSP0240

14 DMTF Standard Version 1.0.0

4 Symbols and Abbreviated Terms 384

385

387
388

390
391

393
394

396
397

399
400

402
403

405
406

408
409

411
412

414
415

417
418

420
421

The following symbols and abbreviations are used in this document.

4.1. 386
ACPI
Advanced Configuration and Power Interface

4.2. 389
ARP
Address Resolution Protocol

4.3. 392
CIM
Common Information Model

4.4. 395
DCE
Distributed Computing Environment

4.5. 398
GUID
Globally Unique Identifier

4.6. 401
IMD
intelligent management device

4.7. 404
IPMI
Intelligent Platform Management Interface

4.8. 407
ISO/IEC
International Organization for Standardization/International Engineering Consortium

4.9. 410
MC
Management Controller

4.10. 413
MCTP
Management Component Transport Protocol

4.11. 416
MSB
most significant byte

4.12. 419
OSF
Open Software Foundation

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 15

4.13. 422
PLDM 423

424

426
427

429
430

432
433

435
436

437

438

439

440
441

442
443

444

445
446
447

448

449
450

451

Platform Level Data Model

4.14. 425
PMCI
Platform Management Component Intercommunications

4.15. 428
TID
Terminus ID

4.16. 431
UUID
Universally Unique Identifier

4.17. 434
WBEM
Web-Based Enterprise Management

5 Conventions
The conventions described in the following clauses apply to all of the PLDM specifications.

5.1 Reserved and Unassigned Values

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other
numeric ranges are reserved for future definition by the DMTF.

Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0
(zero) and ignored when read.

5.2 Byte Ordering

Unless otherwise specified, for all PLDM specifications byte ordering of multi-byte numeric fields or multi-
byte bit fields is "Little Endian" (that is, the lowest byte offset holds the least significant byte, and higher
offsets hold the more significant bytes).

5.3 PLDM Data Types

Table 1 lists the abbreviations and descriptions for common data types that are used in PLDM message
fields and data structure definitions.

Table 1 – PLDM Data Types

Data Type Interpretation

uint8 Unsigned 8-bit binary integer

sint8 Signed 8-bit binary integer

uint16 Unsigned 16-bit binary integer

sint16 Signed 16-bit binary integer

uint32 Unsigned 32-bit binary integer

sint32 Signed 32-bit binary integer

Platform Level Data Model (PLDM) Base Specification DSP0240

16 DMTF Standard Version 1.0.0

Data Type Interpretation

uint40 Unsigned 40-bit binary integer

sint40 Signed 40-bit binary integer

uint64 Unsigned 64-bit binary integer

sint64 Signed 64-bit binary integer

string UCS-2 string

bool8 A Boolean value represented using an unsigned 8-bit binary integer where 0x00 means False,
and any non-zero value means True

real32 Also known as "single precision". A 4-byte floating-point format, where:
[31] – S (sign) bit (1 = negative, 0 = positive)
[30:23] – exponent as a binary integer (8 bits)
[22:0] – mantissa as a binary integer (23 bits)

Per ANSI/IEEE Standard 754 convention, the value represented is determined as follows:
If Exponent = 255 and Mantissa is nonzero, then Value = NaN ("Not a number").
If Exponent = 255 and Mantissa is zero and S is 1, then Value = -Infinity.
If Exponent = 255 and Mantissa is zero and S is 0, then Value = Infinity.
If 0<Exponent<255, then Value=(-1)**S * 2 ** (Exponent-127) * (1.Mantissa) where "1.Mantissa"
is intended to represent the binary number created by prefixing Mantissa with an implicit leading
1 and a binary point.
If Exponent = 0 and Mantissa is nonzero, then Value = (-1)**S * 2 ** (-126) * (0.Mantissa).
These are "unnormalized" values.
If Exponent = 0 and Mantissa is zero and S is 1, then Value = -0.
* If Exponent = 0 and Mantissa is zero and S is 0, then Value = 0.

real64 Also known as "double-precison". A 8-byte floating-point, where:
[63] – S (sign) bit (1 = negative, 0 = positive)
[62:52] – exponent as a binary integer (11 bits)
[51:0] – mantissa as a binary integer (52 bits)

Per IEEE 754 convention, the value represented is determined as follows:
If Exponent = 2047 and Mantissa is nonzero, then Value = NaN ("Not a number").
If Exponent = 2047 and Mantissa is zero and S is 1, then Value = -Infinity.
If Exponent = 2047 and Mantissa is zero and S is 0, then Value = Infinity.
If 0<Exponent<2047, then Value = (-1)**S * 2 ** (Exponent-1023) * (1.Mantissa) where
"1.Mantissa" is intended to represent the binary number created by prefixing Mantissa with an
implicit leading 1 and a binary point.
If Exponent = 0 and Mantissa is nonzero, then Value = (-1)**S * 2 ** (-1022) * (0.Mantissa).
These are "unnormalized" values.
If Exponent = 0 and Mantissa is zero and S is 1, then Value = -0.
* If Exponent = 0 and Mantissa is zero and S is 0, then Value = 0.

datetime A string containing a date-time per DSP0004

char16 16-bit UCS-2 character

enum8 A sequential enumeration, starting from 0 as the default, with optional numeric declarator. The
number 8 indicates that the enum is encoded using an 8-bit binary number.

Example: enum8 { fred, mary, bob, george } has the value 0 correspond to fred, 1 for mary,
2 for bob, and 3 for george. A value may be explicitly declared such as: enum { fred, mary=2,
bob, george }, in which case 0 corresponds to fred, 2 corresponds to mary, and 4
corresponds to george.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 17

Data Type Interpretation

timestamp104 A binary datetime type formatted as a series of 13 bytes, as follows:
(Generally, this format can be mapped to a CIM Datetime timestamp value.)
byte 12 UTC and Time resolution
 The CIM Datetime format allows a variable number of significant digits to be

represented for the date/time and UTC fields using a '*' character in the string to
indicate which contiguous digit positions should be ignored, starting from the least
significant position. PLDM generally supports this format by using this byte to
present an enumeration for the resolution.

[7:4] UTC resolution = enum4 {UTCunspecified, minute, 10minute, hour }
[3:0] Time resolution = enum4 { microsecond, 10microsecond, 100microsecond,

millisecond, 10millisecond, 100millisecond, second, 10second, minute, 10minute,
hour, day, month, year }

bytes 11:10 year as uint16
byte 9 month as uint8 (starting with 1)
byte 8 day within the month as uint8 (starting with 1)
byte 7 hour within the day as uint8 (24-hour representation starting with 0)
byte 6 minute within the hour as uint8 (starting with 0)
byte 5 seconds within the minute as uint8 (starting with 0)
byte 4:2 microsecond within the second as a 24-bit binary integer (starting with 0)
bytes 1:0 UTC offset in minutes as sint16

interval72 A binary datetime interval formatted as a series of 9 bytes, as follows:
(Generally, this format can be mapped to a CIM Datetime interval value.)
byte 8 Time resolution

[7:4] reserved
[3:0] enum4 { microsecond, 10microsecond, 100microsecond, 1millisecond,

10millisecond, 100millisecond, second, 10second, minute, hour,
day, 10day, 100day }

byte 7:6 number of days as uint16 (starting with 1)
NOTE: CIM DateTime specifies this as six-digit field.

byte 5 hour within the day as uint8 (24-hour representation starting with 0)
byte 4 minute within the hour as uint8 (starting with 0)
byte 3 seconds within the minute as uint8 (starting with 0)
bytes 2:0 microsecond within the second as a 24-bit binary integer (starting with 0)

ver32 A thirty-two-bit encoding of a version number. The encoding of the version number and alpha
fields is defined in 5.5.
[31:24] = major version number
[23:16] = minor version number
[15:8] = update version number
[7:0] = "alpha" byte

UUID See 5.4.

bitfield8 A byte with 8 bit fields. Each of these bit fields can be separately defined.

bitfield16 A 2-byte word with 16 bit fields. Each of these bit fields can be separately defined.

Platform Level Data Model (PLDM) Base Specification DSP0240

18 DMTF Standard Version 1.0.0

5.4 UUID 452

The format of the ID follows the byte (octet) format specified in RFC4122. RFC4122 specifies the
following four different versions of UUID formats and generation algorithms suitable for use with PLDM:

453
454

455

456

457

458

459
460

461

• version 1 (0001b) ("time based")

• version 3 (0011b) "MD5 hash" ("name-based")

• version 4 (0100b) "Pseudo-random" ("name-based")

• version 5 "SHA1 hash" ("name-based")

The version 1 format is recommended. A UUID value should never change over the lifetime of the device
or software version associated with the UUID.

For PLDM, the individual fields within the UUID are transferred in network byte order (most-significant
byte first) per the convention described in RFC4122. For example, Table 2 shows byte order for a UUID in
version 1 format.

462
463

464 Table 2 – Example UUID Format

Field UUID Byte MSB

1 MSB

2

3

time low

4

5 MSB time mid

 6

7 MSB time high and version

8

clock seq high and reserved 9

clock seq low 10

11

12

13

14

15

Node

16

5.5 Ver32 Encoding 465

466
467

468
469

470
471

The version field is comprised of four bytes referred to as the "major," "minor," "update," and "alpha"
bytes. These bytes shall be encoded as follows:

• The "major," "minor," and "update" bytes are BCD-encoded, and each byte holds two BCD
digits.

• The "alpha" byte holds an optional alphanumeric character extension that is encoded using the
ISO/IEC 8859-1 Character Set.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 19

• The semantics of these fields follow those in DSP4004. 472

473
474

475
476
477
478

479
480
481
482
483
484
485
486

487

488

489
490
491

492

493
494

495
496

497
498

499

500

501

502
503
504
505

• The value 0x00 in the alpha field means that the alpha field is not used. Software or utilities that
display the version number should not display any characters for this field.

• The value 0xF in the most-significant nibble of a BCD-encoded value indicates that the most-
significant nibble should be ignored and the overall field treated as a single-digit value. Software
or utilities that display the number should display only a single digit and should not put in a
leading "0" when displaying the number.

• A value of 0xFF in the "update" field indicates that the entire field is not present. 0xFF is not
allowed as a value for the "major" or "minor" fields. Software or utilities that display the version
number should not display any characters for this field.

EXAMPLE:
Version 3.7.10a → 0xF3F71061
Version 10.01.7 → 0x1001F700
Version 3.1 → 0xF3F1FF00
Version 1.0a → 0xF1F0FF61

5.6 Notations

The following notations are used for PLDM specifications:

• M:N In field descriptions, this will typically be used to represent a range of byte offsets
starting from byte M and continuing to and including byte N (M ≤ N). The lowest offset
is on the left, and the highest is on the right.

• rsvd Abbreviation for Reserved. Case insensitive.

• [4] Square brackets around a number are typically used to indicate a bit offset. Bit offsets
are given as zero-based values (that is, the least significant bit [LSb] offset = 0).

• [7:5] A range of bit offsets. The most-significant is on the left, and the least-significant is on
the right.

• 1b A lowercase "b" after a number consisting of 0s and 1s indicates that the number is in
binary format.

• 0x12A A leading "0x" indicates that the number is in hexadecimal format.

6 PLDM Base Protocol
The PLDM base protocol defines the common fields for PLDM messages and their usage.

Though there are command-specific PLDM header fields and trailer fields, the fields for the base protocol
are common for all PLDM messages. These common fields support the identification of payload type,
message, PLDM Type, and PLDM command/completion codes. The base protocol’s common fields
include a PLDM Type field that identifies the particular class of PLDM messages.

http://www.dmtf.org/standards/published_documents/DSP4004_2.0.0.pdf

Platform Level Data Model (PLDM) Base Specification DSP0240

20 DMTF Standard Version 1.0.0

6.1 PLDM Message Fields 506

507
508

Figure 1 shows the fields that constitute a generic PLDM message. The fields within PLDM messages are
transferred from the lowest offset first.

7

PLDM Message Payload (zero or more bytes)

PLDM TypeInstance ID

6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 1 Byte 2 Byte 3 Byte 4

D Hdr
Ver
Hdr
Ver

R
q PLDM Completion Code*PLDM Command Code

 509

510

511

512

513

*The PLDM Completion Code is present only in PLDM response messages.

Figure 1 – Generic PLDM Message Fields

Table 3 defines the common fields for PLDM messages.

Table 3 – PLDM Message Common Fields

Field Name Field Size Description

Rq 1 bit Request bit. This bit is used to help differentiate between PLDM
request messages and other PLDM messages.

This field is set to 1b for PLDM request messages and
unacknowledged datagram request messages.

This field is set to 0b for PLDM response messages. See the
following row of this table for valid combinations of Rq and D bits.

D 1 bit Datagram bit. This bit is used to indicate whether the Instance ID
field is being used for tracking and matching requests and
responses, or just being used for asynchronous notifications.

This field is set to 1b for asynchronous notifications.

This field is set to 0b to indicate that the Instance ID field is being
used for tracking and matching requests and responses.

D and Rq bit combinations:

00b – For PLDM response messages

01b – For PLDM request messages

10b – Reserved

11b – For Unacknowledged PLDM request messages or
asynchronous notifications

rsvd 1 bit Reserved

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 21

Field Name Field Size Description

Instance ID 5 bits The Instance ID (Instance Identifier) field is used to identify a new
instance of a PLDM request to differentiate new PLDM requests
that are sent to the same PLDM terminus. The Instance ID field is
used to match up a particular instance of a PLDM response
message with the corresponding instance of PLDM request
message.

If the requester issued a non-idempotent command, it shall
complete any retries for that command before issuing a command
with a new Instance ID.

Hdr Ver 2 bits The Hdr Ver (Header Version) field identifies the header format.
For this version of the specification, the value is set to 00b. This
version applies to the PLDM message format.

PLDM Type 6 bits The PLDM Type field identifies the type of PLDM that is being
used in the control or data transfer carried out using this PLDM
message. The PLDM Type field allows PLDM messages to be
grouped together based on functions. See DSP0245 for the
definitions of PLDM Type values.

PLDM Command Code 8 bits For PLDM request messages, the PLDM Command Code field
identifies the type of operation the message is requesting. The
PLDM command code values are defined per PLDM Type. The
PLDM Command Code that is sent in a PLDM request message
shall be returned in the corresponding PLDM response message.

PLDM Message Payload Variable The PLDM message payload is zero or more bytes that are
specific to a particular PLDM Message. By convention, the PLDM
Message formats are described using tables with the first byte of
the payload identified as byte 0.

NOTE: The baseline PLDM message payload size is PLDM Type-
specific.

PLDM Completion Code 8 bits The PLDM Completion Code field provides the status of the
operation. This field is the first byte of the PLDM Message Payload
for PLDM response messages and is not present in PLDM request
messages. This field indicates whether the PLDM command
completed normally. If the command did not complete normally,
then the completion code provides additional information regarding
the error condition. The PLDM Completion Code can be generic or
PLDM Type-specific.

6.2 Generic PLDM Completion Codes (PLDM_BASE_CODES) 514

515
516
517
518
519

520
521
522
523
524
525
526
527

The command completion code fields are used to return PLDM operation results in the PLDM response
messages. On a successful completion of a PLDM operation, the specified response parameters (if any)
shall also be returned in the response message. For a PLDM operation resulting in an error, unless
otherwise specified, the responder shall not return any additional parametric data and the requester shall
ignore any additional parameter data provided in the response.

Table 4 defines the generic completion codes for the PLDM commands. PLDM Type-specific command
completion codes are defined in the respective PLDM specification. Unless otherwise specified in a
PLDM specification, specific error completion codes are optional. If a PLDM command completes with an
error, the generic failure message (ERROR), an appropriate generic error completion code from Table 4,
or a PLDM Type-specific error completion code shall be returned. For an unsupported PLDM command,
the ERROR_UNSUPPORTED_PLDM_CMD completion code shall be returned unless the responder is in
a transient state (not ready), in which it cannot process the PLDM command. If the responder is in a
transient state, it may return the ERROR_NOT_READY completion code.

Platform Level Data Model (PLDM) Base Specification DSP0240

22 DMTF Standard Version 1.0.0

Table 4 – Generic PLDM Completion Codes (PLDM_BASE_CODES) 528

Value Name Description

0x00 SUCCESS The PLDM command was accepted and completed
normally.

0x01 ERROR This is a generic failure message to indicate an error
processing the corresponding request message. It
should not be used when a more specific error code
applies.

0x02 ERROR_INVALID_DATA The PLDM request message payload contained invalid
data or an illegal parameter value.

0x03 ERROR_INVALID_LENGTH The PLDM request message length was invalid. (The
PLDM request message body was larger or smaller
than expected for the particular PLDM command.)

0x04 ERROR_NOT_READY The Receiver is in a transient state where it is not ready
to process the corresponding PLDM command.

0x05 ERROR_UNSUPPORTED_PLDM_CMD The command field in the PLDM request message is
unspecified or not supported for this PLDM Type. This
completion code shall be returned for any unsupported
command values received.

0x20 ERROR_INVALID_PLDM_TYPE The PLDM Type field value in the PLDM request
message is invalid or unsupported.

0x80-0xFF COMMAND_SPECIFIC This range of completion code values is reserved for
values that are specific to a particular PLDM request
message. The particular values (if any) and their
definition is provided in the specification for the
particular PLDM command.

All other Reserved Reserved

6.3 Concurrent PLDM Command Processing 529

530
531

532

533
534
535

536
537

538
539
540

541
542

This section describes the specifications and requirements for handling concurrent overlapping PLDM
requests.

6.3.1 Requirements for Responders

A PLDM terminus is not required to process more than one request at a time (that is, it can be "single
threaded" and does not have to accept and act on new requests until it has finished responding to any
previous request).

A responder that is not ready to accept a new request can either silently discard the request, or it can
respond with an ERROR_NOT_READY message completion code.

The PLDM does not restrict any specific model for the number of requesters or responders that can
communicate simultaneously. The PLDM specification allows an implementation to have a responder that
handles one request at a time and to not maintain contexts for multiple requests or multiple requesters.

If a PLDM terminus is working on a request from a requester, then the PLDM terminus shall be able to
process (or queue up processing) and send the response independently from sending its own request.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 23

When a responder allows simultaneous communications with multiple requesters, the requirements on
the responder are as follows:

543
544

545
546
547

548

549

550
551
552

553
554

555
556
557
558
559

560
561
562

563

• The responder shall use the following fields to track a PLDM request: the transport address
(which is transport-binding specific, for example EID for MCTP transport) of the requester,
PLDM Type, PLDM Command Code, and Instance ID of the PLDM request.

• If the responder runs out of internal resources, it may fail PLDM requests.

6.3.2 Requirements for Requesters

A PLDM terminus that issues PLDM requests to another PLDM terminus shall wait until it either gets the
response to a particular request, times out waiting for the response, or receives an indication that
transmission of the particular request failed, before issuing a new PLDM request.

A PLDM terminus that issues PLDM requests is allowed to have multiple simultaneous requests
outstanding to different responders.

A PLDM terminus that issues PLDM requests should be prepared to handle the order of responses that
may not match the order in which the requests were sent (that is, it should not automatically assume that
a response that it receives is in the order in which the request was sent). It should check to see that the
PLDM Type, PLDM Command Code, and Instance ID values in the response match up with a
corresponding outstanding command before acting on any parameters returned in the response.

The timing specifications shown in Table 5 are specific to PLDM request messages. The PLDM
responses are not retried. A “try” or “retry” of a request is defined as a complete transmission of the
PLDM request message.

Table 5 – Timing Specifications for PLDM Messages

Timing Specification Symbol Min Max Description

Number of request retries PN1 2 See
"Descrip-
tion"

Total of three tries, minimum: the original try
plus two retries. The maximum number of
retries for a given request is limited by the
requirment that all retries shall occur within
PT3Max of the initial request.

Request-to-response time PT1 – 100 msec This interval is measured at the responder
from the end of the reception of the PLDM
request to the beginning of the transmission
of the response. This requirement is tested
under the condition where the responder
can successfully transmit the response on
the first try.

Time-out waiting for a response PT2 PT1Max+
2*PT4Max

PT3Min –
2*PT4Max

This interval is measured at the requester
from the end of the successful transmission
of the PLDM request to the beginning of the
reception of the corresponding PLDM
response. This interval at the requester sets
the minimum amount of time that a
requester should wait before retrying a
PLDM request.
Note: This specification does not preclude
an implementation from adjusting the
minimum time-out waiting for a response to
a smaller number than PT2 based on
measured response times from responders.
The mechanism for doing so is outside the
scope of this specification.

Platform Level Data Model (PLDM) Base Specification DSP0240

24 DMTF Standard Version 1.0.0

Timing Specification Symbol Min Max Description

Instance ID expiration interval PT3 5 sec [1] 6 sec This is the interval after which the Instance
ID for a given response will expire and
become reusable if a response has not
been received for the request. This is also
the maximum time that a responder tracks
an Instance ID for a given request from a
given requester.

Transmission Delay PT4 – 100 ms Time to take into account transmission
delay of a PLDM Message. Measured as
the time between the end of the
transmission of a PLDM message at the
transmitter to the beginning of the reception
of the PLDM message at the receiver.

NOTE: [1] If a requester is reset, it may produce the same Instance ID for a request as one that was previously issued. To
guard against this, it is recommended that Instance ID expiration be implemented. Any request from a given requester
that is received more than PT3 seconds after a previous, matching request should be treated as a new request, not a
retry.

7 PLDM Messaging Control and Discovery Commands 564

565
566
567
568

569

570

The PLDM base definition supports a PLDM Type field that allows the commands to be grouped using a
PLDM Type. This section contains detailed descriptions for PLDM messages that are used for control and
discovery operations. The PLDM commands for PLDM messaging control and discovery are also defined
in this section.

Table 6 defines the PLDM command codes for PLDM messaging control and discovery.

Table 6 – PLDM Messaging Control and Discovery Command Codes

Command Code Value Requirement Section

SetTID 0x01 Optional See 7.1.1.

GetTID 0x02 Mandatory See 7.1.2.

GetPLDMVersion 0x03 Mandatory See 7.2.

GetPLDMTypes 0x04 Mandatory See 7.3.

GetPLDMCommands 0x05 Mandatory See 7.4.

7.1 PLDM Terminus 571

572
573
574
575
576
577

578

579
580

A PLDM Terminus is defined as the point of communication termination for PLDM messages and the
PLDM functions associated with those messages. Given a PLDM terminus, a mechanism is required that
can uniquely identify each terminus so that the semantic information can be bound to that identification.
The Terminus ID (TID) is a value that identifies a PLDM terminus. TIDs are used in PLDM messages
when it is necessary to identify the PLDM terminus that is the source of the PLDM Message. TIDs are
defined within the scope of PLDM Messaging.

7.1.1 SetTID Command

The SetTID command is used to set the Terminus ID (TID) for a PLDM Terminus. This command is
typically only used by the PLDM Initialization Agent function. The command format is shown in Table 7.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 25

Table 7 – SetTID Command Format 581

Byte Type Request Data

0 uint8 TID

Special value: 0x00, 0xFF = reserved.

Byte Type Response Data

0 enum8

completionCode

Possible values: { PLDM_BASE_CODES }

7.1.2 GetTID Command 582

583
584

585

The GetTID command is used to retrieve the present Terminus ID (TID) setting for a PLDM Terminus.
The command format is shown in Table 8.

Table 8 – GetTID Command Format

Byte Type Request Data

0 – No request data

Byte Type Response Data

0 enum8

completionCode

possible value: { PLDM_BASE_CODES }

1 uint8 TID

special value: 0x00 – Unassigned TID, 0xFF – reserved

7.2 GetPLDMVersion 586

587
588
589
590

591
592
593
594
595

596
597
598

The GetPLDMVersion command can be used to retrieve the PLDM base specification versions that the
PLDM terminus supports, as well as the PLDM Type specification versions supported for each PLDM
Type. The format of the request and response message parameters for this command is shown in
Table 9.

More than one version number can be returned for a given PLDM Type by the GetPLDMVersion
command. This enables the command to be used for reporting different levels of compatibility and for
backward compatibility with different specification versions. The individual specifications for the given
PLDM Type define the requirements for which version number values should be used for that PLDM
Type. Those documents define which earlier version numbers, if any, shall also be listed.

The command returns a completion code that indicates whether the PLDM Type number passed in the
request is supported. This enables the command to also be used to query the endpoint for whether it
supports a given PLDM Type.

Platform Level Data Model (PLDM) Base Specification DSP0240

26 DMTF Standard Version 1.0.0

Table 9 – GetPLDMVersion Request and Response Message Format 599

Byte Type Request Data

0:3 uint32 DataTransferHandle
This field is a handle that is used to identify PLDM version data transfer.
This handle is ignored by the responder when the TransferOperationFlag is set to
GetFirstPart.

4 enum8 TransferOperationFlag
This field is an operation flag that indicates whether this is the start of the transfer.
Value: {GetNextPart=0x00, GetFirstPart=0x01}

5 uint8 PLDMType
This field identifies the PLDM Type whose version information is being requested.
See DSP0245 for valid PLDMType values.

Byte Type Response Data

0 enum8

CompletionCode
 possible values:
 {

PLDM_BASE_CODES,
 INVALID_DATA_TRANSFER_HANDLE=0x80,
 INVALID_TRANSFER_OPERATION_FLAG=0x81,
 INVALID_PLDM_TYPE_IN_REQUEST_DATA=0x83

}

1:4 uint32 NextDataTransferHandle
This field is a handle that is used to identify the next portion of PLDM version data transfer.

5 enum8 TransferFlag
This field is the transfer flag that indicates what part of the transfer this response represents.
Possible values: {Start=0x01, Middle=0x02, End=0x04, StartAndEnd = 0x05}

Variable –

Portion of PLDMVersionData (contains one or more version fields as described in Table 10)
See Table 10 for the format.

Table 10 – PLDM Representation of PLDMVersionData 600

Byte Type Field

0:3 ver32 Version[0]

This field is the first entry of the version supported for the specified PLDM type.

… … …

4*(N-1):4*N-1 ver32 Version[N-1]

This field is the Nth entry of the version supported for the specified PLDM type.

4*N:4*N+3 uint32 PLDMVersionDataIntegrityChecksum

Integrity checksum on the PLDM version data. It is calculated starting at the first byte
of the PLDM representation of PLDMVersionData.

For this specification, CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16
+ x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3)
shall be used for the integrity checksum computation. The CRC computation involves
processing a byte at a time with the least significant bit first.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 27

This command is defined in such a manner that it allows the PLDM version data to be transferred using a
sequence of one or more command or response messages. When more than one command is used to
transfer the PLDM version data, the response messages contain the non-overlapping contiguous portions
of PLDM version data as defined in

601
602
603
604
605

606
607

608

609

610
611
612

613
614
615

616

Table 10. By combining the portions of PLDM version data from the
response messages, the entire PLDM version data can be reconstructed.

The version of this PLDM base specification shall be 1.0.0 (major version number 1, minor version
number 0, update version number 0, and no alpha version).

This is reported using the encoding as: 0xF1F0F000.

7.3 GetPLDMTypes

The GetPLDMTypes command enables management controllers to discover the PLDM type capabilities
supported by the PLDM terminus and get a list of the PLDM types that are supported. The request and
response parameters for this message are listed in Table 11.

The response to this command may be specific according to which transport endpoint over which the
request was received (that is, a device that supports a given PLDM Type on a transport endpoint may not
support that PLDM Type equally across all the transport endpoints that connect to the device).

Table 11 – GetPLDMTypes Request and Response Message Format

Byte Type Request Data

- - None

Byte Type Response Data

0 enum8

CompletionCode

 Possible values:

 { PLDM_BASE_CODES}

1:8 bitfield8[8] PLDMTypes

Each bit represents whether a given PLDM Type is supported:

 1b = PLDM Type is supported.

 0b = PLDM Type is not supported.

For bitfield8[N], where N = 0 to 7

 [7] – PLDM Type N*8+7 Supported

 [..] – …

 [1] – PLDM Type N*8+1 Supported

 [0] – PLDM Type N*8+0 Supported

7.4 GetPLDMCommands 617

618
619
620

621
622
623

The GetPLDMCommands command enables management controllers to discover the PLDM command
capabilities supported by the PLDM terminus for a specific PLDM Type and version as a responder. The
request and response parameters for this message are listed in Table 12.

The response to this command may be specific according to which transport endpoint over which the
request was received (that is, a device that supports a given PLDM Type on a transport endpoint may not
support that PLDM Type equally across all the transport endpoints that connect to the device).

Platform Level Data Model (PLDM) Base Specification DSP0240

28 DMTF Standard Version 1.0.0

Table 12 – GetPLDMCommands Request and Response Message Format 624

Byte Type Request Data

0 uint8 PLDMType

This field identifies the PLDM Type for which command support information is being
requested.

See DSP0245 for valid PLDMType values.

1:4 ver32 Version

This field identifies the version for the specified PLDM Type.

Byte Type Response Data

0 enum8

CompletionCode

 Possible values:

 {

PLDM_BASE_CODES,

 INVALID_PLDM_TYPE_IN_REQUEST_DATA=0x83

 INVALID_PLDM_VERSION_IN_REQUEST_DATA=0x84

}

1:32 bitfield8[32] PLDMCommands (up to 256 commands supported for the specified PLDM Type)

Each bit represents whether a given PLDM command is supported:

 1b = PLDM command is supported.

 0b = PLDM command is not supported.

For bitfield8[N], where N = 0 to 31

 [7] – PLDM Command N*8+7 Supported

 [..] – …

 [1] – PLDM Command N*8+1 Supported

 [0] – PLDM Command N*8 Supported

8 PLDM Messaging Control and Discovery Examples 625

626
627
628
629

630
631

632
633
634
635

636
637

638

The GetPLDMVersion command (see 7.2) for transferring PLDM version data supports multipart
transfers. The GetPLDMVersion command uses flags and data transfer handles to perform multipart
transfers. The following requirements apply to the usage of TransferOperationFlag, TransferFlag, and
DataTransferHandle for a given data transfer:

1) For initiating a data transfer (or getting the first part of data) by using a Get* command, the
TransferOperationFlag shall be set to GetFirstPart in the request of the Get* command.

• For transferring any part of the data other than the first part by using a Get* command, the
TransferOperationFlag shall be set to GetNextPart and the DataTransferHandle shall be
set to the NextDataTransferHandle that was obtained in the response of the previous Get*
command for this data transfer.

• The TransferFlag specified in the response of a Get* command has the following
meanings:

– Start, which is the first part of the data transfer.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 29

– Middle, which is neither the first nor the last part of the data transfer. 639

640

641

642
643
644
645
646

– End, which is the last part of the data transfer.

– StartAndEnd, which is the first and the last part of the data transfer.

• The requester shall consider a data transfer complete when the TransferFlag in the
response of a Get* command is set to End or StartAndEnd.

EXAMPLE 1: The example in Figure 2 shows how multipart transfers can be performed using the generic mechanism
defined in the GetPLDMVersion command. In Figure 2, the PLDM version data is transferred in three
parts. Figure 2 shows the flow of the data transfer.

 647

648
649

650
651
652

653

654
655
656

657
658
659
660
661

Figure 2 – Example of Multipart PLDM Version Data Transfer Using the GetPLDMVersion
Command

EXAMPLE 2: Figure 3 shows an example sequence of steps performed by a requester to discover the PLDM versions
and types supported by the responder as well as the commands supported for each PLDM type.

In the example, the following steps are performed by the requester:

1) The requester first uses the GetTID command to get the PLDM Terminus ID of the responder.

2) The requester then uses GetPLDMTypes to discover the PLDM types supported by the
responder. (In the example shown in Figure 3, the responder supports two PLDM types, PLDM
Type 0 and PLDM Type 1.)

3) For each PLDM type that is supported by the responder, the requester uses GetPLDMVersion
and GetPLDMCommands to discover the supported versions of the specifications for the PLDM
type and the supported PLDM commands for the specific PLDM version and type. In this
example, the responder supports only one version of the specification (1.0.0) for each PLDM
Type.

Platform Level Data Model (PLDM) Base Specification DSP0240

30 DMTF Standard Version 1.0.0

 662

663 Figure 3 – PLDM Discovery Command Example

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.0.0 DMTF Standard 31

ANNEX A664
665
666
667
668

(Informative)

Change Log

Version Date Author Description

1.0.0a 9/24/2008 Hemal Shah 1.0.0a Preliminary version
1.0.0 4/23/2009 DMTF Standard Release

 669

	Foreword
	Introduction
	1 Scope
	2 Normative References
	2.1 Approved References
	2.2 Other References

	3 Terms and Definitions
	3.1 Requirement Terms and Definitions
	3.2 PLDM Terms and Definitions

	4 Symbols and Abbreviated Terms
	5 Conventions
	5.1 Reserved and Unassigned Values
	5.2 Byte Ordering
	5.3 PLDM Data Types
	5.4 UUID
	5.5 Ver32 Encoding
	5.6 Notations

	6 PLDM Base Protocol
	6.1 PLDM Message Fields
	6.2 Generic PLDM Completion Codes (PLDM_BASE_CODES)
	6.3 Concurrent PLDM Command Processing
	6.3.1 Requirements for Responders
	6.3.2 Requirements for Requesters

	7 PLDM Messaging Control and Discovery Commands
	7.1 PLDM Terminus
	7.1.1 SetTID Command
	7.1.2 GetTID Command

	7.2 GetPLDMVersion
	7.3 GetPLDMTypes
	7.4 GetPLDMCommands

	8 PLDM Messaging Control and Discovery Examples
	ANNEX A (Informative)Change Log

