
 1

2

3

4

5

6

7

8

9

Document Number: DSP0231

Date: 2009-07-14

Version: 1.0.0

CIM Simplified Policy Language (CIM-SPL)

Document Type: Specification

Document Status: DMTF Standard

Document Language: E

CIM Simplified Policy Language (CIM-SPL) DSP0231

2 DMTF Standard Version 1.0.0

Copyright Notice 10

Copyright © 2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php. 31

32

http://www.dmtf.org/about/policies/disclosures.php

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 3

CONTENTS 33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Foreword ... 7
Introduction ... 8
1 Scope .. 9
2 Normative References ... 9

2.1 Approved References ... 9
2.2 Other References .. 9

3 Terms and Definitions ... 10
4 Symbols and Abbreviated Terms .. 11
5 CIM Policy Model .. 11
6 Usage Models ... 12

6.1 Best Practice Checker .. 12
6.2 Routing in Networks .. 13

7 SPL Policy Rules ... 13
7.1 Policy String Components .. 15

8 SPL Policy Groups .. 21
8.1 Policy Group Components .. 21
8.2 Policy Group Example .. 24

9 Expressions ... 26
9.1 Abs .. 26
9.2 Logical And ... 26
9.3 StartsWith ... 26
9.4 Ceiling ... 26
9.5 Concatenate .. 27
9.6 Contains .. 27
9.7 ContainsOnlyLettersOrDigits .. 27
9.8 ContainsOnlyDigits ... 27
9.9 ContainsOnlyLetters ... 27
9.10 Division ... 28
9.11 EndsWith ... 28
9.12 Equal ... 28
9.13 Exp .. 28
9.14 Floor .. 28
9.15 GetDayOfMonth .. 29
9.16 GetDayOfWeek ... 29
9.17 GetDayOfWeekInMonth .. 29
9.18 GetDayOfYear .. 29
9.19 GetHour12 .. 29
9.20 GetHour24 .. 30
9.21 GetMillisecond .. 30
9.22 GetMinute ... 30
9.23 GetMonth .. 30
9.24 GetSecond .. 30
9.25 GetWeekOfMonth ... 31
9.26 GetWeekOfYear .. 31
9.27 GetYear ... 31
9.28 Greater .. 31
9.29 Greater or Equal ... 31
9.30 IsWithin ... 32
9.31 Less... 32
9.32 Less or Equal .. 32
9.33 Ln .. 32

CIM Simplified Policy Language (CIM-SPL) DSP0231

4 DMTF Standard Version 1.0.0

9.34 Max ... 33 85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

9.35 Min .. 33
9.36 Subtraction .. 33
9.37 Not Equal .. 33
9.38 Logical Not .. 33
9.39 Logical Or .. 34
9.40 Addition ... 34
9.41 Power .. 34
9.42 Product .. 34
9.43 Mod ... 34
9.44 Round ... 35
9.45 SquareRoot ... 35
9.46 StringLength .. 35
9.47 MatchesRegExp .. 35
9.48 Substring Operations .. 35
9.49 ToBoolean ... 38
9.50 ToREAL32 .. 39
9.51 ToSINT32 .. 39
9.52 ToSINT16 .. 39
9.53 ToSINT64 .. 39
9.54 ToLower .. 40
9.55 ToMilliseconds .. 40
9.56 ToSINT8 .. 40
9.57 ToString .. 40
9.58 ToUINT32 ... 41
9.59 ToUINT16 ... 41
9.60 ToUINT64 ... 41
9.61 ToUINT8 ... 41
9.62 ToUpper .. 42
9.63 Word.. 42
9.64 Logical XOR .. 42
9.65 StringConstant .. 42
9.66 LongConstant .. 42
9.67 DoubleConstant .. 43
9.68 DATETIMEConstant ... 43
9.69 BooleanConstant .. 43
9.70 Identifier .. 43

10 Simple Boolean Condition ... 44
11 Collection Operations .. 44

11.1 Basic Collection .. 44
11.2 Collect ... 44
11.3 InCollection ... 46
11.4 Union ... 47
11.5 SubCollection .. 47
11.6 EqCollections .. 47
11.7 AnyInCollection ... 47
11.8 AllInCollection ... 48
11.9 ApplyToCollection ... 48
11.10 Sum ... 48
11.11 MaxInCollection .. 48
11.12 MinInCollection ... 49
11.13 AvrgInCollection, MedianInCollection, sdInCollection .. 49
11.14 CollectionSize ... 49

12 Policy Example .. 49
13 CIM-SPL Grammar .. 50

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 5

ANNEX A (informative) Change Log ... 54 140
141
142

143

144
145
146
147
148

149

150
151
152
153
154
155
156

Bibliography .. 55

Figures

Figure 1 – CIM Policy Information Model .. 12
Figure 2 – Fabric Instance Diagram .. 24
Figure 3 – PolicyGroup Schema ... 25
Figure 4 – Example of CIM Associations .. 46

Tables

Table 1 – Numeric Operators .. 17
Table 2 – Boolean Operators .. 17
Table 3 – Relational Operators ... 17
Table 4 – String Functions .. 18
Table 5 – Numeric Functions .. 19
Table 6 – Time Functions .. 19

CIM Simplified Policy Language (CIM-SPL) DSP0231

6 DMTF Standard Version 1.0.0

 157

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 7

Foreword 158

159
160

161
162

163

164

165

166

167

168

169

170

171

172

173

The Common Information Model Simplified Policy Language (CIM-SPL) specification (DSP0231) was
prepared by the DMTF Policy Working Group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability.

Acknowledgments

The authors wish to acknowledge the following people.

Editor:

• Jorge Lobo – IBM

Participants from the DMTF Policy Working Group:

• Dakshi Agrawal – IBM

• Seraphin Calo – IBM

• Kang-Won Lee – IBM

• Jorge Lobo – IBM

• Andrea Westerinen (Cisco Systems, now at Microsoft)

CIM Simplified Policy Language (CIM-SPL) DSP0231

8 DMTF Standard Version 1.0.0

Introduction 174

175
176
177

178
179
180
181

This document presents the CIM Simplified Policy Language (CIM-SPL), a proposed standard submitted
by the DMTF Policy Working Group. The objective of CIM-SPL is to provide a means for specifying if-
condition-then-action style policy rules to manage computing resources using constructs defined by CIM.

The design of CIM-SPL is inspired by existing policy languages and models including policy definition
language (PDL) from Bell Laboratories, the Ponder policy language from Imperial College, and autonomic
computing policy language (ACPL) from IBM Research. One of the main design points of CIM-SPL is to
provide a policy language compatible with the CIM Policy Model and the CIM Schema.

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 9

CIM Simplified Policy Language (CIM-SPL) 182

184
185
186
187
188
189
190
191

192
193
194
195
196
197

198

199

200

201

202

203
204

206
207
208

210

1 Scope 183

The objective of CIM-SPL is to provide a means for specifying if-condition-then-action style policy rules to
manage computing resources using constructs defined by the underlying model of CIM Information
Model. Using CIM-SPL, one can write policy rules whose condition may consist of CIM data that contains
the properties of managed resources. The CIM data may be available through various types of CIM data
repositories. The action part of a CIM-SPL policy can invoke any operations or function calls in general. In
particular, the action part can contain operations on the CIM data repository to change the properties of a
CIM instance. This document provides several examples drawn from storage provisioning and network
management to illustrate the usage of CIM-SPL.

The basic unit of a CIM-SPL policy is a policy rule. A CIM-SPL policy rule consists of a condition, an
action, and other supporting fields (for example, Import). Multiple policy rules can be grouped into a policy
group. Policy groups can be nested (that is, a policy group can contain other policy groups). In general,
the structure of a policy group reflects a hierarchy of managed resources. For the specification of the
policy condition, CIM-SPL provides the following rich set of operators described in sections 9 and 11, all
based on the intrinsic CIM types:

• signed and unsigned short, regular, and long integers

• float and long float

• string

• Boolean

• calendar

This document presents a detailed description of the basic CIM-SPL operators with examples. These
operations can also be used to compute the arguments passed as parameters to the policy actions.

2 Normative References 205

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

2.1 Approved References 209

DMTF DSP0004, CIM Infrastructure Specification 2.3,
http://www.dmtf.org/standards/published_documents/DSP0004_2.3.pdf 211

213

2.2 Other References 212

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 214

http://www.dmtf.org/standards/published_documents/DSP0004_2.3.pdf
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype

CIM Simplified Policy Language (CIM-SPL) DSP0231

10 DMTF Standard Version 1.0.0

3 Terms and Definitions 215

For the purposes of this document, the following terms and definitions apply. 216

218
219

221
222

224
225
226

228
229
230

232
233

235
236

238
239

241
242
243

245
246
247

249
250
251

253
254

3.1 217
can
used for statements of possibility and capability, whether material, physical, or causal

3.2 220
cannot
used for statements of possibility and capability, whether material, physical, or causal

3.3 223
conditional
indicates requirements to be followed strictly in order to conform to the document when the specified
conditions are met

3.4 227
mandatory
indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

3.5 231
may
indicates a course of action permissible within the limits of the document

3.6 234
need not
indicates a course of action permissible within the limits of the document

3.7 237
optional
indicates a course of action permissible within the limits of the document

3.8 240
shall
indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

3.9 244
shall not
indicates requirements to be followed in order to conform to the document and from which no deviation is
permitted

3.10 248
should
indicates that among several possibilities, one is recommended as particularly suitable, without
mentioning or excluding others, or that a certain course of action is preferred but not necessarily required

3.11 252
should not
indicates that a certain possibility or course of action is deprecated but not prohibited

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 11

4 Symbols and Abbreviated Terms 255

4.1 256
CIMOM 257

258

260
261

263
264

266
267

269
270

272
273

275
276

278
279

281
282
283
284

285
286
287
288
289

290
291
292
293
294
295
296

CIM object manager

4.2 259
HBA
host bus adapter

4.3 262
IP
Internet protocol

4.4 265
MOF
managed object format

4.5 268
SAN
storage area network

4.6 271
SNIA
Storage Networking Industry Association

4.7 274
ssh
secure shell

4.8 277
UTF
Unicode Transformation Format

5 CIM Policy Model 280

This section briefly summarizes the CIM Policy Model, on which CIM-SPL is based. The CIM Policy
Model is an information model defined by the DMTF to describe policy management systems. At its core,
it provides a model for policy systems where the administrator can specify if-condition-then-action style
policies for various distributed capabilities (for example, network filters and access control).

The highest-level constructs of the CIM Policy Model are the CIM_Policy class, the CIM_PolicySet class,
the CIM_PolicyRule class, the CIM_PolicyGroup class, the CIM_PolicyTimePeriodCondition class, and
the associations among them. In addition, the CIM_PolicyRule class is associated with the
CIM_PolicyCondition and CIM_PolicyAction classes, which specify policy conditions and actions. See
Figure 1, which shows the top portion of the hierarchy.

The information model of CIM-SPL is derived from the CIM Policy Model, that is, a policy rule in CIM-SPL
is a subclass of CIM_PolicyRule called CIM_SPL_PolicyRule and contains a string property called
PolicyString. The PolicyString property stores a policy written in CIM-SPL. No separately defined and
associated conditions or actions may need to exist for this PolicyRule. Conditions and actions are
embedded in the text of the CIM-SPL policy in the PolicyString. CIM policies are either a policy rule or an
aggregation of policy rules in a PolicyGroup. This aggregation can contain policy rules or other policy
groups, and either a policy rule or a policy group can be applied to managed elements to govern their

CIM Simplified Policy Language (CIM-SPL) DSP0231

12 DMTF Standard Version 1.0.0

operations. In practice, grouping policy rules that are commonly applied to the same kind of managed
resources makes sense. Thus, it is important to have a way to define policy groups to simplify authoring
and managing of policies. Mechanisms to define CIM-SPL Policies based on the combination of
separately defined conditions, actions and policy groups may be created but are not described in this
document.

297
298
299
300
301

Policy (Abstract)

CommonName: string
PolicyKeywords: string[]

PolicySet (Abstract)

PolicyDecisionStrategy: uint16 {Enum}
PolicyRoles: string[] {D}
Enabled: uint16 {Enum} = 1

PolicyGroup

See Policy Rules

PolicyRule

See Policy Rules

PolicyTimePeriodCondition

See Policy Conditions

*

*

*

*

*

*

PolicySetComponent
Priority: uint16

P
ol

ic
yS

et
A

pp
lie

dT
oE

le
m

en
t

PolicySetValidityPeriod

ManagedElement (Abstract)
(from Core)

 302

303

305
306

308
309
310
311
312
313
314
315
316

317
318

319

Figure 1 – CIM Policy Information Model

6 Usage Models 304

This section outlines some of the ways in which CIM-SPL can be used. The usage models described in
this section are not intended to be exhaustive; rather they are presented here for illustrative purposes.

6.1 Best Practice Checker 307

Policy-based best practice checking is a promising area in validating network configurations. In this
section, the examples are drawn from storage area network (SAN) management. One of the main
challenges in SAN management is the complexity encountered during system setup and reconfiguration.
Typically a SAN consists of a large number of components from multiple manufacturers, and many of the
components may have interoperability constraints. For example, a storage device from a certain vendor
may work with only certain types of SAN switches (with certain firmware levels). Such interoperability
constraints are usually documented and published by device vendors. In addition, over time, SAN
administrators have developed best practices for avoiding typical problems associated with misconfigured
devices. Following is a short list of sample best practices from field practitioners:

• All zones should be configured so that the same host bus adapter (HBA) cannot talk to both
tape and disk devices.

• Both Windows server and Linux server should not be members of the same zone.

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 13

• Every active and connected port should be a member of at least one active zone. 320

321
322
323
324
325
326
327

328
329
330
331
332

334
335

336

337

338

339

340
341
342
343
344
345
346
347
348
349
350

352
353
354
355
356
357

358
359

361
362
363

To enforce these best practices, the storage management software queries the configuration and status
of all the devices in a SAN and stores the configuration information in a CIM database. The policy
management system can check for violations of the best practices that have been encoded in CIM-SPL.
To ensure correct operation, the system administrator may run a configuration checker to validate all best
practices for a particular device after making changes. The configuration checker can also run on a
schedule (for example, every day at midnight), when it pulls the current configuration information from the
database and checks it against best practices.

Alternatively, the policy evaluation may be triggered manually by the system administrator after making a
configuration change. For example, after replacing an old HBA, the system administrator may want to
validate the best practices against the new HBA. In this case, the administrator can evaluate only the
policies relevant to an HBA and only for the configuration of the new HBA, as opposed to evaluating all
the policies for the entire SAN.

6.2 Routing in Networks 333

Typical security policies for networks are implemented during the configuration of network devices such
as switches, routers, or firewalls. The following list provides a few examples of these policies:

• Allow telnet connections within the local network.

• Block any connection from locations outside the local network.

• Block any telnet connection to locations outside the local network.

• Allow ssh connections to locations outside the local network.

To capture these policies, most systems provide support for accepting configuration entries in the form of
“if-then” rules. For example, given the prefix of the local network, the first rule can be written as follows: “If
the input connection comes from an IP address with the local prefix and the destination port is the telnet
port, then accept the connection.” Similarly, the second rule can be written as follows: “If the input
connection comes from an IP address with no local prefix, then drop the connection.” The specification of
these rules in CIM-SPL is straightforward. The implementation most likely depends on the device
enforcing the policy. For example, routers that may directly support an interpreter for CIM-SPL will accept
the CIM_Policies and reprogram themselves accordingly. Other systems, such as a computer running
Linux, can translate the rules into iptables filter rules and perhaps dynamically load the rules into the
operating system kernel. This file with rules is read by the system kernel, and the rules are applied at the
appropriate time.

7 SPL Policy Rules 351

A policy in CIM-SPL is always a policy group but the most basic element in a CIM-SPL policy is a policy
rule. A CIM-SPL policy rule is essentially a stream of characters that specifies a Condition/Action policy
rule. To store, transmit, and represent policy strings in a byte-oriented medium or protocol, the characters
need to be encoded in a byte format. CIM-SPL parsers shall support at least UTF-8 encoding of
characters. A parser may support additional encodings, such as GB18030, the official character set of the
People's Republic of China, to specify identifiers and strings.

The following example illustrates the CIM-SPL format. A detailed description of the syntax is provided in
Section 13.

4.1 # This is an example of a CIM-SPL policy. 360
2005/07/15
Import SAMPLE CIM_V_2_8_CIM_Core28-Final::PhysicalElement;
Strategy Execute_All_Applicable;

CIM Simplified Policy Language (CIM-SPL) DSP0231

14 DMTF Standard Version 1.0.0

Declaration{ 364
365
366
367
368
369
370
371
372
373
374
375
376
377

378

379
380
381
382
383
384

385
386

387
388
389

390
391
392
393

394
395
396
397

398

399

400

401

402

403

404

 InstallDate="ManagedSystemElement.InstallDate";
 Macro { Name = Age;
 Type = Long;
 Arguments Born:DATETIME;
 Procedure = getYear(CurrentDate) – getYear(Born)
 }
}
Policy {
Condition { 4 > Age(InstallDate) AND
 VendorEquipmentType == "switch"}
Decision { Upgrade (SKU) }
}:1
End of Policy

As shown in the preceding example, a policy string comprising a single rule has four components:

1) Import statement: The Import statement in the example refers to a CIM class that is relevant to
the policy string. In the remainder of the policy string, a policy rule is written as if an instance,
called instance under evaluation, of this class is available for manipulation. The rule may be
able to access other objects by traversing the references in associations where the instance
under evaluation participates. An Import statement is required in each policy string. Section
8.1.1 elaborates on the manner in which the object instance may be obtained.

2) Strategy statement: The Strategy statement indicates how many policy rules can be executed.
In the example, this statement can be ignored because the example contains a single rule.

3) Declaration section: A Declaration section defines named constants and macros that can be
used in the policy section of the policy string. In this way, the actual policy specification can be
clearer and easier to understand. The Declaration section is optional.

4) Policy section: The Policy section contains the main body of the policy string, with a condition
statement, a decision statement, and priority. Both the condition and the decision can refer to
the named constants and use the macros defined in the declaration section. The priority helps
to determine what policy rule to execute in case multiple rules are triggered.

In addition, a policy string can have comment statements. Each comment statement starts on a new line
with the # character as the first non-space character. Comment statements can occur anywhere in the
policy string. Comment statements are for human users and for maintenance; they are ignored by the
policy compiler.

Following are conventions and rules that are observed unless specified otherwise:

• Each policy string consists of multiple lines1.

• Consecutive white space characters2 in a line are treated as a single space character.

• Blank lines or lines with only white space characters are ignored.

• Reserved keywords in CIM-SPL are not case-sensitive.

• As the preceding example shows, each policy string may contain multiple sections.

• Each section is separated from the others by a label and opening and closing curly brackets.

1 Lines in a policy string are delimited by line separators that include LF(u000A), CR(u000D), NEL(u0085), FF(u000C), LS(u2028),

and PS(u2029).
2 White space characters include characters in the space separator category (Zs) in the Unicode specification.

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 15

• The order of the data inside the sections is not important. 405

406
407
408
409

410
411
412

414
415
416

418
419
420

421
422
423
424
425
426
427

428

429
430

431
432
433
434
435
436
437

439
440
441
442
443
444

445
446
447
448

• A policy string may refer to identifiers that are either the named constants or macros defined in
the declaration section, or are properties or methods of the instance under consideration or any
property or method of an object that can be reached traversing associations. Identifiers are
described in Section 9.70.

• Semicolons are used at the end of the Import statement and at the end of primitive statements
within the Declaration section and the Policy declaration section (see section 7.1.3) where no
grouping characters (parentheses and curly brackets) occur.

7.1 Policy String Components 413

In the following three subsections the different parts of a simple policy, that is, a policy group with a single
rule, are described in detail. Groups are described in Section 8. Normative grammar is given in
Section 13.

7.1.1 Import Statement 417

When a policy rule is evaluated, the evaluation shall be done for a target set of managed elements. A
policy rule, being part of a policy set, is meant to be applied to a managed element. The target set shall
define instances of PolicySetAppliesToElement.

Every policy group shall have an Import statement and it shall refer to a CIM MOF file and a class
included in that file. For brevity, the class referred to by the Import statement of a policy will be called the
import class of the policy. The object instances in the target shall all be instances of the import class of
the policy and they may further filter to only the objects that satisfy the optional simple Boolean condition
in the Import statement. The syntax for the simple Boolean condition is defined later in Section 10. Note
that the method used for an evaluator of a policy o get access to the managed elements in the target set
of the policy is outside the scope of the language definition and is an implementation issue.

Format:
Import <name> CIM_V<major>_<minor>_<release><final or preliminary><mof file
name w/o extension>::<class name>:<simple Boolean condition> ;

The Import statement specifies that an instance of the class specified in the statement is available during
the evaluation of the policy rules. Policy rules may reference properties of this instance, including the
properties in its super classes. Any other object that a policy rule may refer to in any part of the rule shall
be accessible through reference associations related to this managed element. Operators are available to
traverse associations in which this element participates to get access to other elements and their
properties. The name is an identifier for the policy. It can be any sequence of letters or numbers always
starting with a letter.

7.1.2 Declaration Section 438

The Declaration section contains declarations for named constants and macro procedures. For example,
InstallDate can be defined as "PhysicalElement.ManagedSystemElement.InstallDate", and the InstallDate
constant can be used when specifying the installDate in the Age macro. InstallDate refers to a property of
the super class ManagedSystemElement of PhysicalElement. Details of how identifiers are interpreted
are in Section 9.70. Macro procedures are used for common operations that may appear repeatedly in
the policy sections. The Declaration section is optional.

Format:
Declaration {
 <List of constant definitions> (Optional)
 <List of macro definitions> (Optional)

CIM Simplified Policy Language (CIM-SPL) DSP0231

16 DMTF Standard Version 1.0.0

} 449
450
451
452
453
454
455
456
457
458
459
460
461

462
463
464
465
466

468
469

470
471

The names of constants and macros shall be different from the policy name.
Constant Definition
Format:
 <constant name> = <constant value>;
Macro Definition
Format:
Macro {
Name=<string that is the macro's name>; (Required)
Type=type; (Required)
Argument= name1:type1[,name2:type2]*; (Optional)
 Procedure=<expression> (Required)
}

Name is the identifier of a macro and Type is the return type of the macro call. Each argument is a
Name:Type pair. Procedure defines the expression that is used as a result of a call to this macro. Here
<expression> can be any valid CIM-SPL expression. See section 7.1.3.3 for CIM-SPL expressions and
operators. The expression can include a macro call as long as the macro name has already been defined.
See Section 9.70 for the definition of a macro call.

7.1.3 Policy Section 467

The Policy section contains the main body of a policy rule. It consists of the Policy Declaration, Condition,
and Decision sections.

Format:
Policy {
 Declaration { 472

473
474
475
476
477
478
479
480
481
482

484
485
486

488
489
490

 <List of constant definition> (Optional)
 <List of macro definitions> (Optional)
 }
 Condition { (Optional)
 <If Condition>
 }
 Decision { (Required)
 <Then Decision>
 }
}: Priority

7.1.3.1 Declaration 483

The meaning of this section is the same as the global Declaration section except that the scope of the
policy rule declarations is within the policy rule only. The policy declarations override global declarations if
the names happen to clash.

7.1.3.2 Condition 487

The Condition section is an optional subsection of the Policy section. This is the "if" condition part of the
policy rule. If the Condition section is omitted, the policy is considered always active (that is, an
"unconditional" policy or a policy with a "true" condition).

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 17

Format: 491
492
493
494
495

496
497

499
500
501
502
503

504

505
506

507

Condition {
 <Boolean Expression> (An expression that results in a Boolean constant
 after evaluation)
}

Following is a summary of the operators and the functions that can be used to create Boolean
expressions used in a Condition section. A more detailed description is provided in section 9.1

7.1.3.3 Predefined Operators and Functions 498

With few exceptions (for example, the minus operator, which can be either a unary or binary operator),
each operator has a fixed number of typed arguments. CIM-SPL is a strongly-typed language (that is, the
types of the arguments shall match the types supported by the operators). For example, numeric
operators can take only numeric arguments; string operators can take only string arguments, and so on.
Any named constants and macros, and other expressions, can be arguments to CIM-SPL operators.

Alpha, beta, and gamma in the examples shown in Table 1, Table 2 and

Table 5 represent numeric constants, and time, date, date1, date2 shown in Table 6 represent a date
time constant.

Table 1 – Numeric Operators

Operator Example

+ (alpha + 2)

– (alpha – 2),
– alpha

* (alpha * beta)

/ (alpha / beta)

Table 2 – Boolean Operators 508

Operator Example

&& (alpha < 10) && (beta > 3)

|| (alpha < 10) || (beta > 3)

^ (alpha < 10) ^ (beta > 3)

! !(alpha)

Alpha, beta, and gamma in the examples shown in Table 3 are either all numeric values or all strings. 509

510 Table 3 – Relational Operators

Operator Example

== (alpha == beta)

!= (alpha != beta)

>= (alpha >= beta)

<= (alpha <= beta)

> (alpha > beta)

< (alpha < beta)

CIM Simplified Policy Language (CIM-SPL) DSP0231

18 DMTF Standard Version 1.0.0

Table 4 – String Functions 511

Function Example

stringLength stringLength("John Doe") ; returns 8

toUpper toUpper("John Doe") ; returns “JOHN DOE”

toLower toLower("John Doe") ; returns “john doe”

concatenate concatenate("John ", "Doe") ; returns “John Doe”

substring substring("John Doe", 1, 5) ; returns “ohn ”

matchesRegExp matchesRegExp(IP,"\d{1,3}+\.\d{1,3}+\.\d{1.3}+")

leftSubstring leftSubstring("Mississippi", 4, "LeftToRight") ; returns “Miss"
leftSubstring("Mississippi", 4, "RightToLeft") ; returns "Mississ"

rightSubstring rightSubstring("Mississippi", 4, "LeftToRight") ; returns "issippi"
rightSubstring("Mississippi", 4, "RightToLeft") ; returns "ippi"

middleSubstring middleSubstring("Mississippi", 4, 5, "LeftToRight") ; returns "issip"
middleSubstring("Mississippi", 4, 5, "RightToLeft") ; returns "ippi"

replaceSubstring replaceSubstring("Illinois", "nois", "i") ; returns ”Illini”

toUINT8 toUINT8("2")

toSINT8 toSINT8("2")

toSINT16 toSINT16("12")

toUINT16 toUINT16("12")

toSINT32 toSINT32("-12341234")

toUINT32 toUINT32("12341234")

toSINT64 toSINT64("-1234")

toUINT64 toUINT64("1234")

toREAL64 toREAL64("123.45")

toREAL32 toREAL32("12345.678")

toBoolean toBoolean("true")

word word(alpha, " ", 3)

startsWith startsWith("Just a test", "Just") ; returns true

endsWith endsWith("Just a test", "test") ; returns true

contains contains("Just a test", "t a t") ; returns true

containsOnlyDigits containsOnlyDigits("1234")

containsOnlyLetters containsOnlyLetters("aBcD")

containsOnlyLettersOrDigits containsOnlyLettersOrDigits("a1b2C3")

 512

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 19

Table 5 – Numeric Functions 513

Function Example

min min(alpha, beta, gamma)
max max(alpha, beta, gamma)
remainder remainder(alpha, beta)
power power(alpha, beta)
abs abs(alpha)
toBoolean toBoolean(0)
round round(alpha)
exp exp(alpha)
log log(alpha)
sqrt sqrt(alpha)
floor floor(alpha)
ceiling ceiling(alpha)

Table 6 – Time Functions 514

Function Example

getMillisecond getMillisecond(time)
getSecond getSecond(time)
getMinute getMinute(time)
getHour12 getHour12(time)
getHour24 getHour24(time)
getDayOfWeek getDayOfWeek(date)
getDayOfWeekInMonth getDayOfWeekInMonth(date)
getDayOfMonth getDayOfMonth(date)
getDayOfYear getDayOfYear(date)
getWeekOfMonth getWeekOfMonth(date)
getWeekOfYear getWeekOfYear(date)
getMonth getMonth(date)
getYear getYear(date)
isWithin isWithin(date, date1, date2)
toMilliseconds toMilliseconds(time)

7.1.3.4 Decision 515

The Decision section is a required subsection of the Policy section. It contains the then-action clause of
the "if-condition-then-action" policy statement. The statement describes which CIM PolicyActions are
called when the "if" condition is true. If some part of the action block encounters an error and thus the
execution could not complete successfully, a CIM_ERROR_POLICY_EXECUTION should be thrown. In
the implementation, a failure may be defined by a time out, that is, if an action does not complete within a
predefined time, then it is considered a failure.

516
517
518
519
520
521

CIM Simplified Policy Language (CIM-SPL) DSP0231

20 DMTF Standard Version 1.0.0

Format: 522
523
524
525

526

527

528

529

530
531
532
533

534

535
536
537
538

539

540
541
542
543
544

545

546
547
548
549

550

551
552
553
554

555

556
557
558

559

560
561
562

Decision {
 <action block>
}

An <action block> may take one of the following forms:

<policy action name> () <cop> <constant>

A single PolicyAction evaluation without arguments.

<policy action name> (<expression>[, <expression>]*) <cop> <constant>

A single PolicyAction evaluation with at least one argument. The argument expression types shall
match the argument types of the concrete PolicyAction being evaluated. If this is not the case, a
CIM_ERROR_POLICY_EXECUTION may be thrown. <cop> is one of the comparison operators ==,
!= , <, <=, >, >=, and <constant> is a numeric constant. The <cop> <constant> pair is optional.

<cascaded policy name> (Collection)

The cascaded policy name is an identifier that shall refer to a PolicySet element that will be
evaluated as a result of the current policy execution. The collection shall be an expression that
results in a collection of managed elements that are used during the evaluation of the cascaded
policy (that is, it represents the target set). See section 7.1.1.

<action block1> -> <action block2>
This represents a sequence of action evaluations, where action block 1 is executed first, and then
action block 2 is executed if action block 1 executes successfully. If action block 1 does not complete
successfully, action block 2 should not be executed and the whole block returns failure. If the first
block succeeds, the second block is evaluated and the whole block returns whatever the second
block returns.

<action block1> | | <action block2>

This represents the concurrency "some" semantics, where at least one of the action blocks (action
block 1 or action block 2) should be executed. In this case, both the blocks should be executed
concurrently (without any particular order), and the whole block succeeds as soon as one of the two
action blocks succeeds.

<action block1> && <action block2>

This represents the concurrency "all" semantics. Both action blocks should be executed, but there is
no explicit sequence defined for the execution. In this case, both the blocks should be evaluated
concurrently (without any particular order), and the whole block succeeds if both internal blocks
return success.

<action block1> | <action block2>

This represents the conditional semantics. If action block 1 completes successfully, then the whole
block succeeds, and action block 2 is not executed. If action block 1 could not complete successfully,
action block 2 will be executed, and the whole block returns whatever the second block returns.

 (<action block>)

The parentheses are used to change the association precedence of combination operators. In the
action block, all decisions have equal precedence and are evaluated left to right by default. When
enclosed in parentheses, an action block is evaluated as a single block (see the following example).

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 21

A PolicyAction name can take one of the following forms: 563

564
565
566

567
568
569

570
571
572
573
574

575
576
577
578
579

580
581

583
584

586
587
588

589
590
591
592

594

595

596

597
598
599
600
601
602
603

1) Set.Identifier, with the identifier referring to a managed element. The argument names shall be
properties of the element, and the effect is to set all the properties passed as arguments to the
values returned by the expressions.

2) Identifier.MethodName, with the identifier referring to a managed element. The method name
shall be a method of the managed element to which the identifier refers. The arguments shall
match the signature of the method. The <cop> <constant> pair can only appear in this case.

Any evaluation of a concrete PolicyAction (in the form <policy action name> (<expression> …)) or the
setting of properties in a PolicySet instance return either success or failure. For an <action block>, if the
block is just an action or a cascaded policy instance, the block returns whatever the action or the policy
set returns if no <cop> <constant> pair appears after the action. If the pair appears, the execution will be
considered a failure if the value returned by the action does not match the condition.

To see the effect of parentheses, consider the following decision example: a → b | c. The association left
to right makes this expression equivalent to ((a → b) | c). In this case, if the evaluation of a succeeds, b is
evaluated; otherwise c is evaluated. If b is evaluated and succeeds, nothing else is evaluated. On the
other hand if b fails, c is evaluated. So c is evaluated whenever a or b fails. In the expression a → (b | c),
c is evaluated only if a succeeds and b fails.

The same syntax for expressions pertains to specifying arguments for policy action invocations as applies
in condition clauses (see section 7.1.3.3).

7.1.4 Strategy and Priorities 582

The Strategy statement and policy priorities are explained in Section 8, in which policy groups are
introduced.

8 SPL Policy Groups 585

Policies in CIM are not only individual policy rules — they can be policy groups. A policy group in the CIM
Policy Model aggregates policy rules and other policy groups using PolicySetComponent aggregations
(see Figure 1).

This section provides the syntax for writing policy groups and describes how the target set for the
evaluation of the rules inside a policy group is determined. Similar to CIM-SPL policy rules, a CIM-SPL
policy group is represented by a policy string. The policy string for a policy group has the format
presented in the following section.

8.1 Policy Group Components 593

A policy group has the following format:

Import CIM_V<major>_<minor>_<release><final or preliminary><mof file name w/o

extension>::<class name>:<simple Boolean condition> ;

Strategy [Execute_All_Applicable | Execute_First_Applicable] ; (Required)
Declaration {
 <List of constant definition> (Optional)
 <List of macro definitions> (Optional)
}
Policy { … } : Priority; (Optional)
Policy { … } : Priority; (Optional)

CIM Simplified Policy Language (CIM-SPL) DSP0231

22 DMTF Standard Version 1.0.0

Policy { … } : Priority; (Priority is required) 604
605
606
607
608
609
610
611
612

613
614
615

617
618
619
620

621
622
623

624
625
626

627
628
629
630
631
632
633
634
635
636
637

638
639
640
641
642
643
644
645
646
647
648
649
650
651

…
PolicyGroup:[Association Name(Property1,Property2)] { … }: Priority;
(Optional)
PolicyGroup:[Association Name(Property1,Property2)] { … }: Priority;
(Optional)
PolicyGroup:[Association Name(Property1,Property2)] { … }: Priority;
(Optional)

…

At least one policy rule or one policy group shall be part of a policy group. The priorities are positive
integers. The order of policies and policy groups is immaterial; they can be intermixed, but all priorities
shall be different.

8.1.1 Suggested Mechanisms of Invocation: Import Statements and Indications 616

The Import statement in a policy group plays the same role as the Import statement in a single policy rule.
This Import statement indicates the class of the object instance under consideration to each policy rule in
the group. How the Import statement affects the evaluation of a policy group that is contained in another
policy group is described later in this section.

A policy (rule or group) is evaluated on a target set of managed elements. All these managed elements
shall be instances of the import class. This set defines instances of the PolicySetAppliesToElement
association in the CIM Policy Model.

The method used for an evaluator of a policy rule to get access to the managed elements in the target set
of the policy rule is outside the scope of the language definition and is an implementation issue. This
allows different policy invocation methods to be applied in different systems environments.

In one situation, a policy enforcement point may directly request (probably from a CIM Object Manager
(CIMOM) the evaluation of all policies relevant to the resource with which it is associated. The time of
invocation is decided by the policy enforcement point. This evaluation mechanism is often designated as
solicited policy evaluation. For a solicited evaluation of a policy, the target set may consist of all instances
of the import class that match the simple Boolean condition of the Import statement of the policy. If the
simple Boolean condition is not specified in the Import statement, the target set consists of all instances
of the import class. CIM-SPL does not define how the instances of the import class are gathered; that is, it
does not describe the scope of the operation that gathers instances. For example, the scope of gathering
data could be limited to a particular CIMOM or to all locations in the world-wide IT infrastructure of an
enterprise. At the time of activating or installing a policy, the scope of data gathering should be explicitly
or implicitly specified for the policy. Thus, this issue falls outside the CIM-SPL language definition.

In another situation, policy evaluation may be triggered by an event in the system. This mechanism is
often designated as unsolicited policy evaluation. For an unsolicited evaluation of a policy, the target set
for evaluation can be provided implicitly by the instances of CIM_InstIndication subclasses that are
consistent with the Import statement of the policy. The SourceInstance parameter of a CIM_InstIndication
instance points to a managed element that was the source of the CIM_InstIndication. A
CIM_InstIndication instance is consistent with the Import statement of a policy if the class of the managed
element to which the SourceInstance parameter of the CIM_InstIndication points is a subclass of the
class in the Import statement. CIM-SPL does not define which compatible instances of CIM_InstIndication
initiate an unsolicited evaluation of a policy. For example, when a policy is installed or is activated, a
policy server may require that an instance of CIM_IndicationFilter be specified. Such a requirement would
be sufficient for the policy server to generate a CIM_IndicationSubscription to CIM_InstIndications that
trigger evaluations of the policy. Subsequently, when the policy server receives a CIM_InstIndication
instance, the policy server evaluates the corresponding policy on the managed element to which the
SourceInstance parameter of the received CIM_InstIndication instance points.

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 23

8.1.2 Strategy Statement 652

A policy is applicable if its condition part evaluates to TRUE. A policy group is applicable if at least one of
the policies belonging to the group is applicable. Any CIM-SPL implementation shall support at least two
evaluation strategies: Execute_All_Applicable and Execute_First_Applicable. The strategy shall be
specified in the strategy statement of a policy group. The Execute_All_Applicable strategy goes one by
one over all the policies and policy subgroups, evaluating all applicable policies. The
Execute_First_Applicable strategy proceeds in the order indicated by the priorities and examines policies
and policy subgroups until one that is applicable is evaluated. Implementations may handle other
evaluation strategies. If a policy mentions a strategy not supported by the CIM-SPL implementation the
evaluation shall return a CIM_ERR_NOT_SUPPORTED error.

653
654
655
656
657
658
659
660
661

663
664
665
666
667
668
669
670

671

672
673
674

675

676
677
678
679
680
681
682

683
684
685
686
687

688
689

690
691
692
693

694
695
696
697
698
699

8.1.3 Policy Evaluation 662

Assuming that a set of managed elements have been collected for evaluation by a policy group, the
evaluation shall proceed as follows. Consider a policy group P whose constituent policy rules and policy
groups are given by P1, P2, P3, P4, … and so on. For each managed element M for which the policy group
P needs to be evaluated, the evaluation of P proceeds in two steps (regardless of whether the triggering
of the evaluation was solicited or unsolicited): an Applicability step and an Action Evaluation step. The
Applicability step returns a set of action blocks (see Section 7.1.3.4). The Action Evaluation step takes the
set of action blocks output by the Applicability step and evaluates the actions. The Applicability step
proceeds as follows:

First, if the evaluation strategy is Execute_All_Applicable, each Pi is processed as follows:

If Pi is a policy rule, the rule is checked if it is applicable on M. If during the evaluation of any
condition to determine the applicability of a policy rule, the evaluation fails, the policy evaluations fails
and returns CIM_ERR_POLICY_EVALUTION.

If Pi is a policy group, a new target set S is created as follows:

• If the policy group Pi has the optional association specification Association Name(P1,P2)
specified with Pi (indicated following the keyword PolicyGroup), the target set S has
managed elements that are associated with M through instances of the named association
in such a way that M is referenced in the instance by property P1 while the elements in the
target set are referenced in the instances by property P2. If there is no association with
specified name associated with the object the policy evaluation fails and returns
CIM_ERR_POLICY_EVALUTION.

• If the optional association is not specified with Pi, the association is assumed to be the
association CIM_Component, Property1 the property GroupComponent, and Property2 the
property PartComponent. As a consequence, the target set S consists of all Components
of the managed element M. If there is no association CIM_Component the policy
evaluation fails and returns CIM_ERR_POLICY_EVALUTION.

• Then recursively the Applicability step is applied to the policy group Pi for each managed
element in S. Each evaluation returns a set of action blocks

• If the evaluation strategy is Execute_First_Applicable, the Pis shall be processed in the
order specified by the priority (lower numbers first), but the processing shall stop at the first
time either a policy rule is applicable or the Applicability step applied to a policy group
returns a non-empty set of action blocks.

• Next, all action blocks of policy rules that have been processed and have been found
applicable and all action block sets returned by the processing of policy groups are
collected together in a single set of action blocks and the set is returned as the result of the
Applicability step. If no policy rule has been found applicable and no group has returned a
non-empty set of action blocks, the Applicability step will return an empty set of action
blocks.

CIM Simplified Policy Language (CIM-SPL) DSP0231

24 DMTF Standard Version 1.0.0

• Next the Action Evaluation step is applied. In this step each action block in the set shall be
processed according to the action execution schema described in Section

700
701

702
703
704
705
706
707

709
710

7.1.3.4.

The evaluation of a policy group for a managed element works recursively — policy rules in the policy
group are applied to the managed element, and, by default, policy subgroups in a policy group are
applied to the components of the managed element. The default behavior can be changed and the policy
subgroups in a policy group can be applied to other managed elements that are associated with the
managed element through an association other than CIM_Component. Section 8.2 shows how this
evaluation provides a powerful mechanism for specifying and applying policies in a hierarchical manner.

8.2 Policy Group Example 708

Figure 2 shows a diagram from the SNIA specification SMI-S 1.1.0. It shows a SAN Fabric that has Host,
Switch, and Array instances (distinguished by the value of the Dedicated property) as its components.

M
em

be
rO

fC
ol

le
ct

io
n

A
ct

iv
eC

on
ne

ct
io

n

 711

712 Figure 2 – Fabric Instance Diagram

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 25

A policy group for a SAN fabric can comprise two policy subgroups, one for the Switch and the other for
the Array. Inside the policy group for the Switch, a policy group can exist for fiber channel ports (FCPort).
Schematically, the policy group for the SAN fabric is shown in

713
714
715 Figure 3.

 716

717

718
719
720
721
722
723

724
725
726
727

Figure 3 – PolicyGroup Schema

When this policy group is evaluated for a SAN fabric, the first policy subgroup is evaluated for all switches
in the fabric (components of type ComputerSystem with the Dedicated property set to “switch”). Similarly,
the second policy subgroup is evaluated for all storage arrays in the fabric (components of type
ComputerSystem with Property Dedicated set to “storage”). For each switch in the fabric, the innermost
policy group is evaluated for all fiber channel ports (FCPort instances that are reached by traversing the
association GroupComponent from the switch instance).

When specifying a policy group, certain policies are applicable only to a particular component of the
managed element. Or, certain policies within a policy group may be applicable only to managed elements
that are associated in a specific manner with the managed element. Such policies can be conveniently
collected within a subgroup to ease the specification of a policy group.

CIM Simplified Policy Language (CIM-SPL) DSP0231

26 DMTF Standard Version 1.0.0

9 Expressions 728

The expression language of CIM-SPL shall support all CIM intrinsic data types, arrays of these data
types, references to instances of CIM classes, and arrays to instances of CIM classes. This section
describes required operators supported by CIM-SPL.

729
730
731

732
733
734
735
736

738

739

740

741

742

744
745

746

747

748

749

750

752

753

754

755

756

758

759

760

761

762

Unless specified otherwise, a CIM-SPL function shall have the following syntax: operator(operand1,
operand2, operand3, …). The syntax phrase shows the required operator in bold. Items that are required
arguments are shown in italics, like <expression>. Italicized values inside square brackets are optional.
These operators shall not be case-sensitive. Spacing between operands, operators, and parentheses is
optional. If one of the operands were to evaluate to NULL, then the operator shall evaluate to NULL.

9.1 Abs 737

Shall return the absolute value of the required numeric argument

abs(<expression>)

Examples:

abs(nbr1)

abs(4)

9.2 Logical And 743

Shall return a Boolean value corresponding to the logical AND operation on the required Boolean
arguments

 (<expression> && <expression>)

Examples:

(a && b)

((stringLength(alpha) >9) && (5<c))

9.3 StartsWith 751

Shall return TRUE if the first required string argument begins with the second required string argument

startsWith(<expression1>, <expression2>)

where <expression1> is the given string, and <expression2> is the substring

Example:

startsWith("just a test", "just")

9.4 Ceiling 757

Shall return the smallest integer that is greater than or equal to the required numeric argument

ceiling(<expression>)

where <expression> is the numeric value

Example:

ceiling(nbr1)

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 27

9.5 Concatenate 763

Shall return the concatenation of two or more required string arguments 764

765

766

767

768

770

771

772

773

774

776

777

778

779

780

782

783

784

785

786

788

789

790

791

792

concatenate(<expression1>, <expression2>, ..., <expressionN>)

Examples:

concatenate(alpha, beta)

concatenate("Entered ", aValue, " in field")

9.6 Contains 769

Shall return TRUE if the first required string argument contains the second required string argument

contains(<expression1>, <expression2>)

where <expression1> is the given string, and <expression2> is the substring

Example:

contains("just a test", "t a t")

9.7 ContainsOnlyLettersOrDigits 775

Shall return TRUE if the required string argument is all letters or digits

containsOnlyLettersOrDigits(<expression>)

where <expression> is the string

Example:

containsOnlyLettersOrDigits("one4theroad")

9.8 ContainsOnlyDigits 781

Shall return TRUE if the required string argument is all digits

containsOnlyDigits(<expression>)

where <expression> is the string

Example:

containsOnlyDigits(’12345’)

9.9 ContainsOnlyLetters 787

Shall return TRUE if the required string argument is all letters

containsOnlyLetters(<expression>)

where <expression> is the string

Example:

containsOnlyLetters("onefortheroad")

CIM Simplified Policy Language (CIM-SPL) DSP0231

28 DMTF Standard Version 1.0.0

9.10 Division 793

Shall return the result of the first required numeric argument divided by the second required numeric
argument with standard convention casting

794
795

796

797

798
799

801

802
803

804
805

807
808

809

810

811

812
813
814

816
817

818

819

820

821
822

824

825
826
827
828

(<expression> / <expression>)

Examples:

(a/b)
(5/c)

9.11 EndsWith 800

Shall return TRUE if the first required string argument ends with the second required string argument

endsWith(<expression1>, <expression2>)
where <expression1> is the given string, and <expression2> is the substring

Example:
endsWith("just a test", "test")

9.12 Equal 806

Shall return TRUE if the first required argument and the second required argument do not evaluate to the
same value

Equality Operator

(<expression> == <expression>)

Examples:

(a == b)
(stringLength(alpha) == 5)
(string1 == string2)

9.13 Exp 815

Shall return the value of e (Euler's number, the base of natural logarithms) raised to the power of the
value of the required numeric expression

exp(<expression>)

where <expression> is the value of the power

Examples:

exp(nbr1)
exp(2)

9.14 Floor 823

Shall returns the largest integer that is less than or equal to the required numeric argument

floor(<expression>)
where <expression> is the numeric value

Example:
floor(nbr1)

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 29

9.15 GetDayOfMonth 829

Shall return the day of the required DATETIME argument as a numeric value, for example, the first day of
the month has a value of 1, and so on.

830
831

832
833
834
835

837
838

839
840
841
842

844
845
846
847
848
849

850
851
852
853

855

856
857
858
859

861

862
863
864
865

getDayOfMonth(<expression>)
where <expression> is the DATETIME value

Example:
getDayOfMonth(aDate)

9.16 GetDayOfWeek 836

Shall return the day of the week of the required DATETIME argument as a numeric value, for example,
Sunday = 1, Monday = 2, and so on

getDayOfWeek(<expression>)
where <expression> is the DATETIME value

Example:
getDayOfWeek(aDate)

9.17 GetDayOfWeekInMonth 843

Shall return the day of the week in month of the required DATETIME argument as a numeric value, for
example, the DAY_OF_MONTH 1 through 7 always correspond to DAY_OF_WEEK_IN_MONTH 1; 8
through 14 correspond to DAY_OF_WEEK_IN_MONTH 2, and so on. DAY_OF_WEEK_IN_MONTH 0
indicates the week before DAY_OF_WEEK_IN_MONTH 1. Negative values count back from the end of
the month, so the last Sunday of a month is specified as DAY_OF_WEEK = SUNDAY,
DAY_OF_WEEK_IN_MONTH = -1.

getDayOfWeekInMonth(<expression>)
where <expression> is the DATETIME value

Example:
getDayOfWeekInMonth(aDate)

9.18 GetDayOfYear 854

Shall return the day within the year of the required DATETIME argument as a numeric value

getDayOfYear(<expression>)
where <expression> is the DATETIME value

Example:
getDayOfYear(aDate)

9.19 GetHour12 860

Shall return the hour of the required DATETIME argument in a 12-hour clock as a numeric value

getHour12(<expression>)
where <expression> is the DATETIME value

Example:
getHour12(aDate)

CIM Simplified Policy Language (CIM-SPL) DSP0231

30 DMTF Standard Version 1.0.0

9.20 GetHour24 866

Shall return the hour of the required DATETIME argument in a 24-hour clock as a numeric value 867

868

869

870

871

873

874

875

876

877

879

880

881

882

883

885

886

887

888

889

891

892

893

894

895

getHour24(<expression>)

where <expression> is the DATETIME value

Example:

getHour24(aDate)

9.21 GetMillisecond 872

Shall return the millisecond within the second of the required DATETIME argument as a numeric value

getMillisecond(<expression>)

where <expression> is the DATETIME value

Example:

getMillisecond(aDate)

9.22 GetMinute 878

Shall return the minute within the hour of the required DATETIME argument as a numeric value

getMinute(<expression>)

where <expression> is the DATETIME value

Example:

getMinute(aDate)

9.23 GetMonth 884

Shall return the month within the year of the required DATETIME argument as a numeric value

getMonth(<expression>)

where <expression> is the DATETIME value

Example:

getMonth(aDate)

9.24 GetSecond 890

Shall return the second within the minute of the required DATETIME argument as a numeric value

getSecond(<expression>)

where <expression> is the DATETIME value

Example:

getSecond(aDate)

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 31

9.25 GetWeekOfMonth 896

Shall return the week within the month of the required DATETIME argument as a numeric value 897

898

899

900

901

903

904

905

906

907

909

910

911

912

913

915
916

917

918

919
920

922
923

924

925

926
927

getWeekOfMonth(<expression>)

where <expression> is the DATETIME value

Example:

getWeekOfMonth(aDate)

9.26 GetWeekOfYear 902

Shall return the week within the year of the required DATETIME argument as a numeric value

getWeekOfYear(<expression>)

where <expression> is the DATETIME value

Example:

getWeekOfYear(aDate)

9.27 GetYear 908

Shall return the year of the required DATETIME argument as a numeric value

getYear(<expression>)

where <expression> is the DATETIME value

Example:

getYear(aDate)

9.28 Greater 914

Shall return TRUE if the first required argument is greater than (or comes later in lexicographical order
based on UTF-8) the second required argument; returns FALSE otherwise

 (<expression> > <expression>)

Examples:

(a > 4)
(stringLength(alpha) > stringLength("beta"))

9.29 Greater or Equal 921

Shall return TRUE if the first required argument is greater than (or comes later in lexicographical order
based on UTF-8) or equal to the second required argument; returns FALSE otherwise

 (<expression> >= <expression>)

Examples:

(a >= 4)
(stringLength(alpha) >= stringLength("beta"))

CIM Simplified Policy Language (CIM-SPL) DSP0231

32 DMTF Standard Version 1.0.0

9.30 IsWithin 928

Shall return TRUE if the IsWithin checks whether a DATETIME is inside a time period. When taking three
DATETIME expressions, the first is the DATETIME, and the remaining two define the start and end of the
time period.

929
930
931

932

933
934

935

936
937
938
939
940

942
943
944

945

946

947
948

950
951
952

953

954

955
956

958

959

960

961

962

isWithin(<expression1>, <expression2>, <expression3>)

where <expression1> is the DATETIME value to check, <expression2> is the start DATETIME
value, and <expression3> is the end DATETIME value

Examples:

isWithin(aDate1, aDate2, aDate3)
isWithin(2005-01-29T09:40:00 TZ=America/Chicago, aDate1, aDate2)
isWithin(2005-01-29T09:40:00 TZ=America/Chicago, 2006-01-29T09:40:00
TZ=America/Chicago, 2006-01-29T09:40:00 TZ=America/Chicago)
isWithin(aDate, aDate, 2006-01-29T09:40:00 TZ=America/Chicago)

9.31 Less 941

Shall return TRUE if the first required string or numeric argument is less than (or comes earlier in
lexicographical order based on UTF-8) the second required string or numeric argument; returns FALSE
otherwise. Both arguments shall be of the same datatype.

(<expression> < <expression>)

Examples:

(a < 4)
(stringLength(alpha) < stringLength("beta"))

9.32 Less or Equal 949

Shall return TRUE if the first required string or numeric argument is less than (or comes earlier in
lexicographical order based on UTF-8) or equal to the second required string or numeric argument;
returns FALSE otherwise. Both arguments shall be of the same datatype.

(<expression> <= <expression>)

Examples:

(a <= 4)
(stringLength(alpha) <= stringLength("beta"))

9.33 Ln 957

Shall return the natural logarithm of the given required numeric expression (logarithm base e)

ln(<expression>)

where <expression> is the numeric value

Example:

ln(nbr1)

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 33

9.34 Max 963

Shall return the maximum value of the required numeric or string arguments. All arguments shall be either
numeric type or string type.

964
965

966
967
968
969
970

972
973

974
975
976
977
978

980
981
982

983
984
985
986

988
989

990
991
992
993

995
996

997
998
999

1000

max(<expression>, <expression>, [<expression>…])
where <expression>s are the numeric values to compare

Examples:
max(nbr1, nbr2)
max(aNbr, 4, ToSINT16("2"))

9.35 Min 971

Shall return the minimum value of the required numeric or string arguments. All arguments shall be either
numeric type or string type.

min(<expression>, <expression>, [<expression>…])
where <expression>s are the numeric values to compare

Examples:
Min(nbr1, nbr2)
min(aNbr, 4, ToSINT16("2"))

9.36 Subtraction 979

Shall return the result of the first required numeric argument minus the second optional numeric argument
if two arguments are present; otherwise, returns the unary minus of the first required numeric argument.
The data type of the result value shall follow standard JAVA casting conventions.

(<expression> - <expression>)
Examples:

(a - b)
(stringLength(alpha) - 5)

9.37 Not Equal 987

Shall return TRUE if the first required argument and the second required argument do not evaluate to the
same value

(<expression> != <expression>)
Examples:

(a != b)
(stringLength(alpha) != c)

9.38 Logical Not 994

Shall return a Boolean value that corresponds to the logical NOT operation on the required Boolean
argument

!(<expression>)
Examples:

!(alpha)
!(true)

CIM Simplified Policy Language (CIM-SPL) DSP0231

34 DMTF Standard Version 1.0.0

9.39 Logical Or 1001

Shall return a Boolean value that corresponds to the logical OR operation on the required Boolean
arguments

1002
1003

1004
1005
1006
1007

1009
1010

1011
1012
1013
1014
1015

1016
1017

1018
1019
1020
1021
1022

1024
1025

1026
1027
1028
1029

1031
1032

1033
1034
1035
1036
1037

 (<expression> || <expression>)
Examples:

(a || b)
((stringLength(alpha) < 5) || (5+b))

9.40 Addition 1008

Shall return the sum of the required numeric arguments. The data type of the result value shall follow the
standard JAVA casting conventions.

 (<expression> + <expression>)
Examples:

(a + b)
(stringLength(alpha) + 5)

9.41 Power

Shall return the value of the first required numeric argument raised to the power of the second required
numeric argument.

power(<expression1>, <expression2>)
where <expression1> is the value raised to the power of <expression2>

Examples:
power(nbr1, nbr2)
power(2, 4)

9.42 Product 1023

Shall return the product of the required numeric arguments. The data type of the result value shall follow
the standard JAVA casting conventions.

 (<expression> * <expression>)
Examples:

(a * b)
(stringLength(alpha) * c)

9.43 Mod 1030

Shall return the remainder from an operation of dividing the first required numeric argument by the
second required numeric argument

mod(<expression1>, <expression2>)
where <expression1> is the value divided by <expression2>

Examples:
mod(nbr1, nbr2)
mod(aNbr, 4)

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 35

9.44 Round 1038

Shall return the closest SINT32 value to the required numeric argument. The return type of the result shall
follow Java conventions for rounding and unary numeric promotion.

1039
1040

1041

1042

1043

1044
1045

1047

1048

1049

1050

1051

1053

1054

1055

1056

1057
1058

1060
1061
1062

1063

1064
1065
1066

1067

1068

1070
1071
1072

round(<expression>)

where <expression> is the value to round

Examples:

round(nbr1)
round(ToREAL32(aNbr))

9.45 SquareRoot 1046

Shall return the square root of the required numeric argument

squareRoot(<expression>)

where <expression> is the numeric value

Example:

squareRoot(nbr1)

9.46 StringLength 1052

Shall return the number of characters in the required string argument

stringLength(<expression>)

where <expression> is the string

Examples:

stringLength(alpha)
stringLength("hello world")

9.47 MatchesRegExp 1059

Shall return TRUE if the required first string argument matches the regular expression defined by the
required second string argument. The second string argument shall be interpreted as a regular
expression.

matchesRegExp(<expression1>, <regExp>)

where <expression1> shall return a string and <regExp> shall be a regular expression that shall
follow the syntax and semantics of regular expressions in the Pattern class of the java.util.regex
core package in Java 2 SE 5.0.

Example:

matchesRegExp(IP,"\d{1,3}+\.\d{1,3}+\.\d{1.3}")

9.48 Substring Operations 1069

The following set of string operations can be implemented using the MatchesRegExp operator. However,
CIM-SPL provides for these additional substring operations for readability and possibly more efficient
implementations.

CIM Simplified Policy Language (CIM-SPL) DSP0231

36 DMTF Standard Version 1.0.0

9.48.1 Substring 1073

The substring operator takes either two or three arguments. The first and second arguments of this
operator are required while the third argument is optional. The first argument of this operator shall be a
string argument, while the second and third argument shall be integer argument.

1074
1075
1076

1077
1078
1079
1080

1081
1082
1083
1084
1085

1086

1087
1088

1089

1090

1092
1093
1094
1095

1096
1097
1098
1099
1100
1101

1102
1103
1104
1105

1106

1107
1108

1109

1110
1111

This operator shall return the substring of the first string argument, starting at the position indicated by the
second numeric argument and going to the end of the string or the position indicated by the third numeric
argument - 1. The position of a character is determined as follows: The first character is at position 0, the
second character is at position 1, and so on.

The second numeric argument shall be greater than or equal to 0. The third numeric argument shall be
greater than the second numeric argument if the third argument is present. If the starting position given by
the second numeric argument is greater than the length of the string, an empty string shall be returned. If
the third numeric position is not present, the string starting at the second numeric position until the end of
the string shall be returned.

substring(<expression1>, <expression2>, [<expression3>])

where <expression1> is a string argument, and <expression2> and <expression3> are integers
(UINT32) argument.

Examples:

substring(”Robert Hancock”, 2, 8) returns “bert H”.

9.48.2 LeftSubstring 1091

The LeftSubstring operator returns a prefix of a given string argument by taking three arguments. How to
compute the prefix is determined by the arguments. The first argument shall be a string and it indicates
the given string, the second argument shall be either an integer or a string indicating an offset, and the
third argument shall be a string indicating a direction and is either “LeftToRight” or “RightToLeft”.

When the offset is given by a number, the prefix is determined by counting the character position by the
offset from either left to right (from the beginning of the string) or from right to left (from the end of the
string). In particular, if the direction is "LeftToRight", the offset indicates the number of characters to return
from the beginning of the string. If the direction is "RightToLeft", the offset indicates the number of
characters to skip from the end of the string.3 For example, leftSubstring("Mississippi", 4, "LeftToRight")
returns "Miss", and leftSubstring("Mississippi", 4, "RightToLeft") returns "Mississ".

When the offset is given by a string, the prefix is determined by searching for the offset string in the
original string in the direction specified by the third parameter. The returned substring consists of the
characters on the left side of the offset string. For example, leftSubstring("Mississippi", "ss",
"LeftToRight") returns "Mi", and leftSubstring("Mississippi", "ss", "RightToLeft") returns "Missi".

leftSubstring(<expression1>, <expression2>, <expression3>)

where <expression1> is a string, <expression2> is an integer, and <expression3> is a string
constant that indicates either "LeftToRight" or "RightToLeft"

leftSubstring(<expression1>, <expression2>, <expression3>)

where <expression1> and <expression2> are strings, and <expression3> is a string constant
that indicates either "LeftToRight" or "RightToLeft"

3 If the offset value is a negative number, the entire string is returned in either case.

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 37

Examples: 1112

1113
1114

1116
1117
1118
1119

1120
1121
1122
1123
1124
1125

1126
1127
1128
1129

1130

1131
1132

1133

1134
1135

1136

1137
1138

1140
1141
1142
1143
1144
1145
1146
1147

1148

1149
1150

1151

1152
1153

leftSubstring(StateSymbolAndZip, 2, "LeftToRight") // to get the state symbol
leftSubstring(FirstAndLastName, " ", "LeftToRight") // to get the first name

9.48.3 RightSubstring 1115

The RightSubstring operator returns a suffix of a given string argument by taking three arguments. How to
compute the suffix is determined by the arguments. The first argument shall be a string and it indicates
the given string, the second argument shall be either an integer or a string indicating an offset, and the
third argument shall be a string indicating a direction and is either “LeftToRight” or “RightToLeft”.

When the offset is given by a number, the suffix is determined by simply counting the character position
by the offset from either left to right (from the beginning of the string) or from right to left (from the end of
the string). In particular, if the direction "RightToLeft", the offset indicates the number of characters to
return as a suffix. If the direction is "LeftToRight", the offset indicates the number of characters to skip
from the beginning of the string. For example, rightSubstring("Mississippi", 4, "LeftToRight") returns
"issippi", and rightSubstring("Mississippi", 4, "RightToLeft") returns "ippi".

When the offset is given by a string, the suffix is determined by searching for the offset string in the
original string in the direction specified by the third parameter. The returned substring consists of the
characters on the right side of the offset string. For example, rightSubstring("Mississippi", "ss",
"LeftToRight") returns "issippi", and rightSubstring("Mississippi", "ss", "RightToLeft") returns "ippi".

rightSubstring(<expression1>, <expression2>, <expression3>)

where <expression1> is a string, <expression2> is an integer, and <expression3> is a string
constant that indicates either "LeftToRight" or "RightToLeft"

rightSubstring(<expression1>, <expression2>, <expression3>)

where <expression1> and <expression2> are strings, and <expression3> is a string constant
that indicates either "LeftToRight" or "RightToLeft"

Examples:

rightSubstring(StateSymbolAndZip, 5, RightToLeft) // to get the zip code
rightSubstring(FirstAndLastName, " ", "LeftToRight) // to get the last name

9.48.4 MiddleSubstring 1139

The MiddleSubstring operator returns a middle portion of a given string using various arguments as filters.
How to compute the suffix is determined by the arguments. MiddleSubstring takes four arguments:
original string, first offset, second offset, and direction string. The first and second offsets shall be
specified either by a number or a string. The direction string can be either "LeftToRight" or "RightToLeft".
The meaning of the first offset is similar to that in the rightSubstring: it indicates where the resulting
substring starts scanning, either from the left or from the right based on the direction string. The meaning
of the second offset is as follows: if it is a number, it simply indicates the number of characters to return; if
it is a string, it specifies where the substring should end. For example:

middleSubstring(<expression1>, <expression2>, <expression3>, <expression4>)

where <expression1> is a string, <expression2> and <expression3> are integers, and
<expression4> is a string constant that indicates either "LeftToRight" or "RightToLeft"

middleSubstring(<expression1>, <expression2>, <expression3>, <expression4>)

where <expression1> is a string, <expression2> is an integer, <expression3> is a string, and
<expression4> is a string constant that indicates either "LeftToRight" or "RightToLeft"

CIM Simplified Policy Language (CIM-SPL) DSP0231

38 DMTF Standard Version 1.0.0

middleSubstring(<expression1>, <expression2>, <expression3>, <expression4>) 1154

1155
1156

1157

1158
1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1170
1171
1172
1173

1174

1175

1176

1177

1179
1180
1181
1182

1183

1184

1185

1186
1187

where <expression1> is a string, <expression2> is a string, <expression3> is an integer, and
<expression4> is a string constant that indicates either "LeftToRight" or "RightToLeft"

middleSubstring(<expression1>, <expression2>, <expression3>, <expression4>)

where <expression1> is a string, <expression2> and <expression3> are strings, and
<expression4> is a string constant that indicates either "LeftToRight" or "RightToLeft"

Examples:

middleSubstring("Mississippi", 4, 5, "LeftToRight") = "issip"

middleSubstring("Mississippi", 4, 5, "RightToLeft") = "ippi"

middleSubstring("Mississippi", "ss", 5, "LeftToRight") = "issip"

middleSubstring("Mississippi", "ss", 5, "RightToLeft") = "ippi"

middleSubstring("Mississippi", 4, "ss", "LeftToRight") = "i"

middleSubstring("Mississippi", 4, "ss", "RightToLeft") = ""

middleSubstring("Mississippi", "ss", "ip", "LeftToRight") = "iss"

middleSubstring("Mississippi", "ss", "ip", "RightToLeft") = "Missi"

9.48.5 ReplaceSubstring 1169

The ReplaceSubstring operator shall take two or three string arguments. It replaces one substring with
another substring in a given string. The first argument specifies the given string, the second argument
specifies a from-string, and the third argument specifies a to-string. Note that it is a purely functional form
with no side-effect — that is, none of the string arguments are modified.

replaceSubstring(<expression1>, <expression2>, [<expression3>])

where <expression1>, <expression2>, and <expression3> are strings

Example:

replaceSubstring(Name, "Jim", "James")

9.49 ToBoolean 1178

Shall return Boolean TRUE if the required argument is a string argument that equates to “true” ignoring
the case; shall return Boolean TRUE if the required argument is a numeric argument that evaluates to a
non-zero; otherwise, it shall return FALSE.
Note: toBoolean(1) returns TRUE. toBoolean("1") returns FALSE, because this is passing in a string.

toBoolean(<expression>)

where <expression> is the value to be converted

Examples:

toBoolean("true")
toBoolean(1)

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 39

9.50 ToREAL32 1188

Shall return a Real32 value corresponding to the one required argument. The required argument shall be
either of type string or numeric. The conversion shall be done according to the Java conventions.

1189
1190

1191

1192

1193

1194
1195

1197
1198

1199

1200

1201

1202
1203

1205
1206

1207

1208

1209

1210
1211

1213
1214

1215

1216

1217

1218
1219
1220

ToREAL32(<expression>)

where <expression> is the string

Examples:

ToREAL32("25.")
ToREAL32(alpha)

9.51 ToSINT32 1196

Shall return a SINT32 value corresponding to the one required argument. The required argument shall be
either of type string or numeric. The conversion shall be done according to the Java conventions.

ToSINT32(<expression>)

where <expression> is the string

Examples:

ToSINT32("257")
ToSINT32(alpha)

9.52 ToSINT16 1204

Shall return a SINT16 value corresponding to the one required argument. The required argument shall be
either of type string or numeric. The conversion shall be done according to the Java conventions.

ToSINT16(<expression>)

where <expression> is the value to convert

Examples:

ToSINT16("25")
ToSINT16(alpha)

9.53 ToSINT64 1212

Shall return a SINT64 value corresponding to the one required argument. The required argument shall be
either of type string or numeric. The conversion shall be done according to the Java conventions.

ToSINT64(<expression>)

where <expression> is the value to convert

Examples:

ToSINT64("2556")
ToSINT64(255)
ToSINT64(alpha)

CIM Simplified Policy Language (CIM-SPL) DSP0231

40 DMTF Standard Version 1.0.0

9.54 ToLower 1221

Shall return the required string argument converted into lowercase 1222

1223

1224

1225

1226
1227

1229
1230

1231

1232

1233

1234

1236
1237

1238

1239

1240

1241
1242
1243

1245
1246

1247

1248

1249

1250

1251
1252
1253

toLower(<expression>)

where <expression> is the string

Examples:

toLower(alpha)
toLower("Hello World")

9.55 ToMilliseconds 1228

Shall return the number of milliseconds since the standard base time known as "the epoch," namely
January 1, 1970, 00:00:00 GMT, corresponding to the required DATETIME argument.

toMilliseconds(<expression>)

where <expression> is the DATETIME value

Example:

toMilliseconds(aDate)

9.56 ToSINT8 1235

Shall return a SINT18 value corresponding to the one required argument. The required argument shall be
either of type string or numeric. The conversion shall be done according to the Java conventions.

ToSINT8(<expression>)

where <expression> is the value to convert

Examples:

ToSINT8("25")
ToSINT8(25)
ToSINT8(alpha)

9.57 ToString 1244

Shall return a String value corresponding to the one required argument. The required argument shall be
either of type Boolean or numeric. The conversion shall be done according to the Java conventions.

Converts the numeric and the Boolean arguments into a string value

toString(<expression>)

where <expression> is the value to convert

Examples:

toString(nbr1)
toString(1)
toString(true)

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 41

9.58 ToUINT32 1254

Shall return a UINT32 value corresponding to the one required argument. The required argument shall be
either of type string or numeric. The conversion shall be done according to the Java conventions.

1255
1256

1257

1258

1259

1260
1261
1262

1264
1265

1266

1267

1268

1269
1270
1271

1273
1274

1275

1276

1277

1278
1279

1281
1282

1283

1284

1285

1286
1287

ToUINT32(<expression>)

where <expression> is the value to convert

Examples:

ToUINT32("2556")
ToUINT32(2550)
ToUINT32(alpha)

9.59 ToUINT16 1263

Shall return a UINT16 value corresponding to the one required argument. The required argument shall be
either of type string or numeric. The conversion shall be done according to the Java conventions.

ToUINT16(<expression>)

where <expression> is the value to convert

Examples:

ToUINT16("2556")
ToUINT16(2550)
ToUINT16(alpha)

9.60 ToUINT64 1272

Shall return a UINT64 value corresponding to the one required argument. The required argument shall be
either of type string or numeric. The conversion shall be done according to the Java conventions.

ToUINT64(<expression>)

where <expression> is the value to convert

Examples:

ToUINT64("2556")
ToUINT64(2550)

9.61 ToUINT8 1280

Shall return a UINT8 value corresponding to the one required argument. The required argument shall be
either of type string or numeric. The conversion shall be done according to the Java conventions.

ToUINT8(<expression>)

where <expression> is the value to convert

Examples:

ToUINT8("25")
ToUINT8(25)

CIM Simplified Policy Language (CIM-SPL) DSP0231

42 DMTF Standard Version 1.0.0

9.62 ToUpper 1288

Shall return an uppercase version of the required string argument. 1289

1290

1291

1292

1293
1294

1296
1297
1298
1299

1300

1301
1302

1303

1304

1306
1307

1308

1309

1310
1311

1313

1314

1315

1317

1318

1319

toUpper(<expression>)

where <expression> is the string

Examples:

toUpper(alpha)
toUpper("hello world")

9.63 Word 1295

This operator shall take three arguments. The first two arguments shall be of type string, and the third
argument shall be of type number. This operator shall extract n words from the first string argument where
the third argument specifies the number n. Words are defined as text between the separator substring
given by the second argument.

word(<expression1>, <expression2>, <expression3>)

where <expression1> is the given string, <expression2> is the separator substring, and
<expression3> is the number

Example:

Word(alpha, " ", 3)

9.64 Logical XOR 1305

Shall return a Boolean value that corresponds to the logical XOR operation on the bit representation of
the two required numeric arguments

(<expression> ^ <expression>)

Examples:

(a ^ b)
(Netmask ^ (IP))

9.65 StringConstant 1312

Values inside double quotes are converted to StringConstants.

Example:

alpha = = "22"

9.66 LongConstant 1316

UINT32 (unquoted) values that do not contain decimals are converted to UINT64 constants.

Example:

alpha == 22

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 43

9.67 DoubleConstant 1320

Numeric (unquoted) values that contain decimal points are converted to Real64 constants. This includes
numeric values ending in a decimal point (for example, 22).

1321
1322

1323

1324

1326
1327

1328

1329

1331
1332

1333

1334

1336

1337
1338

1339
1340

1341
1342
1343
1344
1345

1346
1347
1348
1349
1350
1351

1352
1353
1354

1355
1356

1357
1358
1359

Example:

alpha == 22.25

9.68 DATETIMEConstant 1325

Unquoted values in the format "yyyy-mm-ddThh:mm:ss TZ=javaTimezoneID" are interpreted as a
DATETIMEConstant following the XML standard semantics.

Example:

alpha > 2004-01-29T09:40:00 TZ=America/Chicago

9.69 BooleanConstant 1330

Unquoted strings 'true' or 'false' inside the clauses are converted to BooleanConstants in the resulting
XML.

Example:

alpha == true

9.70 Identifier 1335

Identifier can be either simple or multi-level. A simple identifier shall be any of the following values:

• Name of a named constant. It evaluates to the value of the named constant as defined in the
declaration sections.

• Name of a named macro. It evaluates to the value of the named macro as defined in the
declaration sections.

• <classname.propertyname>, where classname is the class name of the Import statement or any
super class of that class, and propertyname is the name of a property of the classname. The
prefix "classname." is optional. It is required only to disambiguate the name of a property if the
same name is used in any super class and it is not overridden. It evaluates to the value of the
property of the class instance under consideration.

• Any of the preceding three values followed by an index enclosed in square brackets. In this
case, the type of the named constant, macro, or property should be an array of an intrinsic CIM
data type or CIM references. The index can only be an expression that evaluates to an integer
(UINT32) value. The first index is always 0. If any of these conditions is not true, the policy
parser returns an error; otherwise, the expression evaluates to the value of the data in the
position indicated by the index in the array identified by the named constant, macro, or property.

• A qualifier that is an expression that evaluates to a reference of an instance of a CIM class. This
can be the reserved word Self that refers to the object instance under consideration or the
member of a collect operator that returns collections of references (see section 11.2).

A multi-level identifier has the form <qualifier.simpleIdentifier>, where simpleIdentifier is a simple
identifier that is not a qualifier.

A simple identifier that is not prefixed by a qualifier shall be evaluated under the scope of the managed
element that is made available to the rule based on the Import statement. If the qualifier appears, the
scope of the simple identifiers shall be the object referenced by the evaluation of the qualifier.

CIM Simplified Policy Language (CIM-SPL) DSP0231

44 DMTF Standard Version 1.0.0

10 Simple Boolean Condition 1360

A simple Boolean condition shall be a CIM-Expression with the following two properties: 1361

1362

1363

1365
1366
1367
1368
1369

1371

1372

1373

1374

1375

1377
1378

1379

1380
1381

1382
1383
1384
1385
1386
1387
1388
1389

1390
1391
1392
1393
1394
1395
1396

• The expression evaluates to a Boolean constant.

• Any identifier that appears in the expression is a simple identifier that is not a qualifier.

11 Collection Operations 1364

In addition to operators that apply to the CIM intrinsic data types, CIM-SPL also supports operations over
arrays. In addition to handling arrays of basic CIM intrinsic types, CIM-SPL operations also manipulate
arrays of references to CIM object instances. All the arrays returned by a CIM-SPL operation behave as a
CIM Indexed array. These operations are referred to as collection operations, and they are described in
the following subsections.

11.1 Basic Collection 1370

Shall return an array of intrinsic CIM data type objects, all of the same type

[<expression1>, ,expression2>, … , <expressionN>]

where the N <expressions> are of the same type. At least one expression is required.

Example:

[2 , 2, 3+StringLength("abc")]

11.2 Collect 1376

Shall return an array of an intrinsic CIM data type or references to object instances all of the same class.
This operator has two signatures:

collect(<RefExpression>,<association>, <role>, <resultRole>,<CIM class Name>, <expression>)

collect(<RefExpression>,<association>, <role>, <resultRole>, <CIM class Name>, <CIM class
property name>, <expression>)

where <RefExpression> shall be an expression that evaluates to an object reference,
<association> shall be the name of a CIM association, <role> and <resultRole> shall be
reference names in the <association>, <CIM class Name> shall be the class of the <resultRole>
(this argument can be null if there is no ambiguity on the possible classes of the <resultRole>),
<CIM class property name> shall be the name of a property of objects that might be referenced
by the <resultRole> reference in instances of the <association>, the <expression> is a Boolean
expression, and the <identifiers> appearing in the <expression> are evaluated under the scope
of the objects referenced by the <resultRole> reference in instances of the <association>.

In the first signature, any instance of the <association> in which the reference returned by the
evaluation of the <RefExpression> appears as the value of the <role> reference, the object
reference by the <resultRole> is inspected and, if the expression evaluated under the scope of
this object evaluates to TRUE, the object is returned in the collection. In the second signature,
instead of returning a reference to the object, only the value of the property identified by the
<CIM class property name> is returned. If this property is an array, this operation returns an
array with the first values of all collected object properties.

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 45

Examples: 1397

1398
1399

1400
1401

1402
1403
1404
1405
1406
1407
1408
1409
1410
1411

collect(Self, Realizes, PhysicalElement, LogicalDevice, CIM_LogicalDevice,
TotalPowerOnHours > 5)

collect(Self , Realizes, PhysicalElement, LogicalDevice, CIM_LogicalDevice,
TotalPowerOnHours, TotalPowerOnHours > 5)

Self references an instance of the CIM_PhysicalElement class. To traverse multiple associations, collect
operators can be nested, as in the following example:
collect(
 collect(Self , Realizes,
 PhysicalElement, LogicalDevice, CIM_LogicalDevice,
 true)[0],
 DeviceServiceImplementation,
 LogicalDevice,
 CIM_Service,
 True)[1].Started

CIM Simplified Policy Language (CIM-SPL) DSP0231

46 DMTF Standard Version 1.0.0

Starting in a PhysicalElement (see Figure 4), the Realizes association is traversed to get a collection of
LogicalDevice elements. Using one of these logical devices as an anchor (the first one in the collection),
the DeviceServiceImplementation association is traversed to get a collection of Service elements. The
expression takes the second element in this collection ([1]), and the value of the Started property is
returned.

1412
1413
1414
1415
1416

 1417

1418

1420

1421

1422
1423

1424

1425
1426

Figure 4 – Example of CIM Associations

11.3 InCollection 1419

Checks whether an object is a member of a collection

inCollection(<expression>, <collection>)

Shall returns TRUE if the value returned by <expression> appears in <collection>. The type of the
<expression> shall the same type as the arguments in the <collection>.

Example:

inCollection(100, collect(PhysicalElement.Self , Realizes, PhysicalElement, LogicalDevice,
CIM_LogicalDevice, TotalPowerOnHours, TotalPowerOnHours > 5))

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 47

11.4 Union 1427

Shall results in a new collection that is the union of the two required collections in the arguments. Object
repetitions are preserved.

1428
1429

1430

1431

1432
1433

1435

1436

1437

1438

1439
1440

1442

1443

1444
1445

1446

1447
1448

1450

1451

1452
1453
1454
1455

1456

1457
1458

union(<collection>, <collection>)

Example:

union([100],collect(PhysicalElement.Self , Realizes, PhysicalElement, LogicalDevice,
CIM_LogicalDevice, TotalPowerOnHours, TotalPowerOnHours > 5))

11.5 SubCollection 1434

Checks whether a collection is a subcollection of another collection

subCollection(<collection1>, <collection2>)

Shall return TRUE if every member in <collection1> appears in <collection2>

Example:

subCollection([100,150],collect(PhysicalElement.Self , Realizes, PhysicalElement, LogicalDevice,
CIM_LogicalDevice, TotalPowerOnHours, TotalPowerOnHours > 5))

11.6 EqCollections 1441

Checks whether two collections are equal

eqCollections(<collection1>, <collection2>)

Shall return TRUE if <collection1> is a subcollection of <collection2>, <collection2> is a subcollection
of <collection1>, and the repetitions of objects in both collections is identical

Example:

eqCollections([100,150],collect(PhysicalElement.Self , Realizes, PhysicalElement, LogicalDevice,
CIM_LogicalDevice, TotalPowerOnHours, TotalPowerOnHours > 5))

11.7 AnyInCollection 1449

Checks whether an object with a given property exists in a collection

anyInCollection(<expression> <op> <collection>)

where <op> shall be either a Boolean or relational operator. If <op> is a Boolean operator,
<expression> shall be Boolean. If <op> is relational, <expression> shall be of a type compatible with
the operator. The operation shall return TRUE if there is an object <oj> in <collection> such that
<expression> <op> <oj> is true.

Example:

anyInCollection(240 > collect(PhysicalElement.Self , Realizes, PhysicalElement, LogicalDevice,
CIM_LogicalDevice, TotalPowerOnHours, TotalPowerOnHours > 5))

CIM Simplified Policy Language (CIM-SPL) DSP0231

48 DMTF Standard Version 1.0.0

11.8 AllInCollection 1459

Checks whether all objects in a collection have a given property 1460

1461

1462
1463
1464
1465

1466

1467
1468

1470

1471

1472
1473
1474

1475

1476
1477

1479
1480

1481

1482

1483
1484

1486

1487

1488

1489
1490

1491

allInCollection(<expression> <op> <collection>)

where <op> shall be either a Boolean or relational operator. If <op> is a Boolean operator,
<expression> shall be Boolean. If <op> is relational, <expression> shall be of a type compatible with
the operator. The operation shall return TRUE if for every object <oj> in <collection>, <expression>
<op> <oj> returns TRUE.

Example:

anyInCollection(240 > collect(PhysicalElement.Self , Realizes, PhysicalElement, LogicalDevice,
CIM_LogicalDevice, TotalPowerOnHours, TotalPowerOnHours > 5))

11.9 ApplyToCollection 1469

Applies an arithmetic operation to each element in a collection and shall return a numeric collection

applyToCollection(<expression> <op> <collection>)

where <op> shall be a binary numeric operator and <expression> is a numeric expression. The
operation shall return a collection similar to <collection> but in which every object <oj> in
<collection> is replaced by the result of the expression <expression> <op> <oj>.

Example:

applyToCollection(1024 + collect(PhysicalElement.Self , Realizes, PhysicalElement, LogicalDevice,
CIM_LogicalDevice, TotalPowerOnHours, TotalPowerOnHours > 5))

11.10 Sum 1478

Shall return the sum of a collection of numeric CIM data elements. The <collection> shall be a collection
of numeric values.

sum(<collection>)

Example:

sum(collect(PhysicalElement.Self , Realizes, PhysicalElement, LogicalDevice, CIM_LogicalDevice,
TotalPowerOnHours, TotalPowerOnHours > 5))

11.11 MaxInCollection 1485

Shall return the maximum object from a collection of totally ordered CIM data objects

maxInCollection(<collection>)

Example:

maxInCollection(collect(PhysicalElement.Self , Realizes, PhysicalElement, LogicalDevice,
CIM_LogicalDevice, TotalPowerOnHours, true))

Strings are ordered lexicographically based on UTF-8.

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 49

11.12 MinInCollection 1492

Shall return the smallest object from a collection of totally ordered CIM data objects 1493

1494

1495

1496
1497

1499
1500

1501

1502

1503
1504

1506

1507

1508

1509
1510

1512
1513

1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528

minInCollection(<collection>)

Example:

minInCollection(collect(PhysicalElement.Self , Realizes, PhysicalElement, LogicalDevice,
CIM_LogicalDevice, TotalPowerOnHours, true))

11.13 AvrgInCollection, MedianInCollection, sdInCollection 1498

Shall return the average/median/standard deviation in a double from a collection of numeric CIM data
objects. The <collection> shall be a collection of numeric values.

avrgInCollection(<collection>) / medianInCollection(<collection>) / sdInCollection(<collection>)

Example:

avrgInCollection(collect(PhysicalElement.Self , Realizes, PhysicalElement, LogicalDevice,
CIM_LogicalDevice, TotalPowerOnHours, true))

11.14 CollectionSize 1505

Shall return the size of a collection in a UINT32

collectionSize(<collection>)

Example:

collectionSize(collect(PhysicalElement.Self , Realizes, PhysicalElement, LogicalDevice,
CIM_LogicalDevice, TotalPowerOnHours, true))

12 Policy Example 1511

The following example shows a policy that is invoked when a file system is 85 percent full. The policy
expands the storage pool by 25 percent.

Import CIM_X_XX_XXXX::CIM_LocalFileSystem;
Strategy Execute_All_Applicable;
Policy {
 Declaration { /* Macros to traverse HostedService associations to get */
 /* to FileSystemConfigurationService for ModifyFile and */
 /* StorageConfigurationService for CreateOrModify… */
 computer_system = collect(Self, CIM_HostedFileSystem,
 PartComponent, GroupComponent, null, true)[0];
 storage_config_service =
 collect(computer_system, CIM_HostedService, Antecedent,
 Dependent, CIM_StorageConfigurationService,
 true)[0];
 logical_disk = collect(Self, CIM_ResidesOnExtent,
 Dependent, Antecedent, null, true)[0];
 storage_pool = collect(logical_disk, CIM_AllocatedFromStoragePool,

CIM Simplified Policy Language (CIM-SPL) DSP0231

50 DMTF Standard Version 1.0.0

 Dependent, Antecedent, null, true)[0]; 1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548

1550
1551
1552
1553

1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571

 fs_goal = collect(Self, CIM_ElementSettingData, ManagedElement,
 SettingData, CIM_FileSystemSetting true)[0];
 }
Condition {
 (AvailableSpace / FileSystemSize) < 0.25
 }
Decision {
 storage_conf_service.CreateOrModifyElementFromStoragePool("LogicalDisk",
 /* ElementType Volume */
 8, job, fs_goal,
 1.25 * FileSystemSize,
 storage_pool,
 logical_disk)
 // CreateOrModifyElementFromStoragePool defined in pp. 1024
 // of SMI-S 1.1.0 SNIA Standard document
 // ElementType value list can be found in pp. 1116
 | DoSomethingOnFailure()
 }
}:1;

13 CIM-SPL Grammar 1549

In the following grammar, non-terminal symbols are represented by sequences of uppercase letters in
boldface. Alternatives in the production rules are represented by "|", except for the use of "||" in Boolean
expressions and "||| and "|" in action blocks. All blanks but one are ignored in the rules. Blanks do not
appear in any of the terminal symbols.

CIMPOLICY
 Import IMPORTSTATEMENT ;
 Strategy STRATEGYSTATEMENT ;
 DECLARATIONSTATEMENT
 POLICYSTATEMENTS

IMPORTSTATEMENT
 MOFFILENAME :: CLASSNAME OPTIONALBOOLEANCONDITION

MOFFILENAME
 cim_vMAJOR_MINOR_RELEASE_TYPE_FILENAME

MAJOR
 DECIMALNUMBER

MINOR
 DECIMALNUMBER

RELEASE
 DECIMALNUMBER

TYPE
 preliminary | final

FILENAME

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 51

 <a MOF file name without the extension> 1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615

CLASSNAME

 <the name of a CIM class name defined in the MOF file>
OPTIONALBOOLEANCONDITION
 <> | SIMPLEBOOLEANEXPRESSION

STRATEGYSTATEMENT
 Execute_All_Applicable | Execute_First_Applicable

DECLARATIONSTATEMENT
 <> | Declaration { DECLARATIONS }

DECLARATIONS
 CONSTANTDECLARATION MACRODECLARATION

CONSTANTDECLARATION
 <> | NAME = EXPRESSION ; CONSTANTDECLARATION

MACRODECLARATION
 <> | Macro { MACRO } MACRODECLARATION

MACRO
 Name = NAME ; type = CIMTYPE ; ARGUMENTS procedure = EXPRESSION

ARGUMENTS
 <> | argument = NAME : CIMTYPE MOREARGUMENTS ;

MOREARGUMENTS
 <> | , NAME : CIMTYPE MOREARGUMENTS

POLICYSTATEMENTS
 POLICY ; MOREPOLICYSTATEMENTS | POLICYGROUP ; MOREPOLICYSTATEMENTS

MOREPOLICYSTATEMENTS
 <> | POLICYSTATEMENTS

POLICY
 Policy { DECLARATIONSTATEMENT CONDITIONSTATEMENT DECISION } : PRIORITY

CONDITIIONSTATEMENT
 <> | Condition { BOOLEANEXPRESSION }

DECISION
 Decision { ACTIONBLOCK }

PRIORITY
 DECIMALNUMBER

EXPRESSION
 BOOLEANEXPRESSION | ARITHMETICEXPRESSION | STRINGEXPRESSION |
 DATETIMEEXPRESSION

BOOLEANEXPRESSION
 TRUE | FALSE | IDENTIFIER | FUNCTIONCALL |
 BOOLEANEXPRESSION BOOLEANOPERATOR BOOLEANEXPRESSION |
 ARITHMETICEXPRESSION RELATIONALOPERATOR ARITHMETICEXPRESSION |
 STRINGEXPRESSION RELATIONALOPERATOR STRINGEXPRESSION |
 BOOLEANEXPRESSION EQOPERATOR BOOLEANEXPRESSION |
 (BOOLEANEXPRESSION) | ! (BOOLEANEXPRESSION)

BOOLEANOPERATOR

CIM Simplified Policy Language (CIM-SPL) DSP0231

52 DMTF Standard Version 1.0.0

 && | || | ^ 1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659

RELATIONALOPERATOR
 EQOPERATOR | >= | <= | > | <

EQOPEATOR
 == | !=

ARITHMETICEXPRESSION
 NUMBER | IDENTIFIER | FUNCTIONCALL |
 ARITHMETICEXPRESSION * ARITHMETICEXPRESSION |
 ARITHMETICEXPRESSION / ARITHMETICEXPRESSION |
 ARITHMETICEXPRESSION + ARITHMETICEXPRESSION |
 ARITHMETICEXPRESSION - ARITHMETICEXPRESSION |
 (ARITHMETICEXPRESSION)

NUMBER
 UNSIGNINTEGER | INTEGER | REAL

UNSIGNINTEGER
 0UDECIMALNUMBER

INTEGER
 SIGN DECIMALNUMBER

REAL
 INTEGER DECIMAL EXP

DECIMAL
 <> | .DECIMALNUMBER

EXP
 <> | EINTEGER

SIGN
 <> | + | -

DECIMALNUMBER
 DIGIT MOREDIGITS

DIGIT
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

MOREDIGITS
 <> | DIGIT MOREDIGITS

STRINGEXPRESSION

 <any sequence of Unicode characters in between '> |
 IDENTIFIER | FUNCTIONCALL

DATETIMEEXPRESSION
 DATATIME | IDENTIFIER | FUNTIONCALL

DATATIME
 DIGIT DIGIT DIGIT DIGIT-DIGIT DIGIT-DIGIT DIGIT T
 DIGIT DIGIT:DIGIT DIGIT:DIGIT DIGIT TZ=<javaTimezoneID>

IDENTIFIER
 Self | SIMPLEIDENTIFIER | COMPLEXIDENTIFIER

SIMPLEIDENTIFIER
 NAME INDEX | NAME.NAME INDEX

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 53

NAME 1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696

1697

 < any sequence of letters, numbers, and "_" that starts with a letter>
INDEX
 <> | [ARITHMETICEXPRESSION]

COMPLEXIDENTIFIER
 FUNCTIONCALL.SIMPLEIDENTIFIER

FUNCTIONCALL
 NAME (PARAMETERS) |
 collect(PARAMETERS)[ARITHMETICEXPRESSION]. SIMPLEIDENTIFIER

PARAMETERS
 <> | EXPRESSION MOREPARAMETERS

MOREPARAMETERS
 <> | , PARAMETERS

ACTIONBLOCK
 IDENTIFIER (ACTIONARGS) COMP |
 ACTIONBLOCK -> ACTIONBLOCK |
 ACTIONBLOCK && ACTIONBLOCK
 ACTIONBLOCK || ACTIONBLOCK
 ACTIONBLOCK | ACTIONBLOCK |
 (ACTIONBLOCK)

ACTIONARGS
 <> | EXPRESSIONLIST

EXPRESIONLIST
 EXPRESSION | EXPRESSION, EXPRESSIONLIST

COMP
 <> | COP INTEGER

COP
 == | != | <= | < | > | >=

POLICYGROUP
 Policygroup:ASSONAME { CIMPOLICY }:PRIORITY

ASSONAME
 <> | NAME (NAME , NAME)

CIMTYPE
 SHORT | USHORT | INTEGER | LINTEGER |
 REAL | LREAL | STRING | BOOL | CALENDAR

SIMPLEBOOLEANEXPRESSION
 <a BOOLEANEXPRESSION where all the identifiers are limited to NAMES>

CIM Simplified Policy Language (CIM-SPL) DSP0231

54 DMTF Standard Version 1.0.0

ANNEX A
(informative)

Change Log

1698
1699
1700
1701
1702

Version Date Author Description

1.0.0 2009-07-14 DMTF Standard Release

DSP0231 CIM Simplified Policy Language (CIM-SPL)

Version 1.0.0 DMTF Standard 55

Bibliography 1703

1704 DMTF DSP0107, CIM Event Model White Paper 2.1,
http://www.dmtf.org/standards/documents/CIM/DSP0107.pdf 1705

1706 DMTF DSP0108, CIM Policy Model White Paper 2.7,
http://www.dmtf.org/standards/documents/CIM/DSP0108.pdf 1707

1708

http://www.dmtf.org/standards/documents/CIM/DSP0107.pdf
http://www.dmtf.org/standards/documents/CIM/DSP0108.pdf

	Foreword
	Introduction
	1 Scope
	2 Normative References
	2.1 Approved References
	2.2 Other References

	3 Terms and Definitions
	4 Symbols and Abbreviated Terms
	5 CIM Policy Model
	6 Usage Models
	6.1 Best Practice Checker
	6.2 Routing in Networks

	7 SPL Policy Rules
	7.1 Policy String Components
	7.1.1 Import Statement
	7.1.2 Declaration Section
	7.1.3 Policy Section
	7.1.3.1 Declaration
	7.1.3.2 Condition
	7.1.3.3 Predefined Operators and Functions
	7.1.3.4 Decision

	7.1.4 Strategy and Priorities

	8 SPL Policy Groups
	8.1 Policy Group Components
	8.1.1 Suggested Mechanisms of Invocation: Import Statements and Indications
	8.1.2 Strategy Statement
	8.1.3 Policy Evaluation

	8.2 Policy Group Example

	9 Expressions
	9.1 Abs
	9.2 Logical And
	9.3 StartsWith
	9.4 Ceiling
	9.5 Concatenate
	9.6 Contains
	9.7 ContainsOnlyLettersOrDigits
	9.8 ContainsOnlyDigits
	9.9 ContainsOnlyLetters
	9.10 Division
	9.11 EndsWith
	9.12 Equal
	9.13 Exp
	9.14 Floor
	9.15 GetDayOfMonth
	9.16 GetDayOfWeek
	9.17 GetDayOfWeekInMonth
	9.18 GetDayOfYear
	9.19 GetHour12
	9.20 GetHour24
	9.21 GetMillisecond
	9.22 GetMinute
	9.23 GetMonth
	9.24 GetSecond
	9.25 GetWeekOfMonth
	9.26 GetWeekOfYear
	9.27 GetYear
	9.28 Greater
	9.29 Greater or Equal
	9.30 IsWithin
	9.31 Less
	9.32 Less or Equal
	9.33 Ln
	9.34 Max
	9.35 Min
	9.36 Subtraction
	9.37 Not Equal
	9.38 Logical Not
	9.39 Logical Or
	9.40 Addition
	9.41 Power
	9.42 Product
	9.43 Mod
	9.44 Round
	9.45 SquareRoot
	9.46 StringLength
	9.47 MatchesRegExp
	9.48 Substring Operations
	9.48.1 Substring
	9.48.2 LeftSubstring
	9.48.3 RightSubstring
	9.48.4 MiddleSubstring
	9.48.5 ReplaceSubstring

	9.49 ToBoolean
	9.50 ToREAL32
	9.51 ToSINT32
	9.52 ToSINT16
	9.53 ToSINT64
	9.54 ToLower
	9.55 ToMilliseconds
	9.56 ToSINT8
	9.57 ToString
	9.58 ToUINT32
	9.59 ToUINT16
	9.60 ToUINT64
	9.61 ToUINT8
	9.62 ToUpper
	9.63 Word
	9.64 Logical XOR
	9.65 StringConstant
	9.66 LongConstant
	9.67 DoubleConstant
	9.68 DATETIMEConstant
	9.69 BooleanConstant
	9.70 Identifier

	10 Simple Boolean Condition
	11 Collection Operations
	11.1 Basic Collection
	11.2 Collect
	11.3 InCollection
	11.4 Union
	11.5 SubCollection
	11.6 EqCollections
	11.7 AnyInCollection
	11.8 AllInCollection
	11.9 ApplyToCollection
	11.10 Sum
	11.11 MaxInCollection
	11.12 MinInCollection
	11.13 AvrgInCollection, MedianInCollection, sdInCollection
	11.14 CollectionSize

	12 Policy Example
	13 CIM-SPL Grammar
	ANNEX A (informative)Change Log

	Bibliography

