
1/8

CAMELEON: A CIM “Modelware” platform for distributed integrated
management

M. Sibilla, A. Barros de Sales, Y.

Steff, T. Desprats, D. Marquié
IRIT Laboratory

sibilla @irit.fr

François Jocteur -Monrozier,
C. Lasserre

CNES
Francois.Jocteur-Monrozier@cnes.fr

Anne-Isabe lle Rivière
Alcatel CIT

Anne-Isabelle.Riviere@alcatel.fr

Abstract
This paper presents the CAMELEON “Modelware”

platform result of a R&D project led by CNES (French
Space Agency) and developed by Alcatel TITN Answare
and IRIT Research laboratory.

CAMELEON is a distributed management platform for
complex systems. This project provides an innovative
approach for global and distributed management system
involving object-oriented technologies such as CIM,
CORBA and Java.

1. Towards a new generation of Network and
System Management

The requirements of specific user communities is
defined by the qualities of service (i.e. secure; safe critical;
time critical; easy to use) that best categorise their actual
requirements. These requirements imply resource
management in end-systems and network nodes.

A distributed system contains a number of distributed
applications cooperating with supporting services. The
supporting services include all services provided by a
traditional operating system in a centralized system (i.e.
file storage, user access) and include services necessary
for system distribution (i.e. name management, trading
and services supporting distribution transparencies). All
these services required management together with the
applications: the nature of the management functions
required to do this will depend on the concerned services
or applications.

Management systems should be able to manage entire
companies from a global point of view. This means they
have to handle and support the management of thousands
of entities, computers or devices. This requirement
increases by a lot the management informa tion volume.

In network management domain, the informational
model has always represented the implemented
management system functionality. Implementation details
have never been specified, only protocol access.
Therefore, management architecture needed to resolve

heterogeneity from management protocols and
informational models [1], [2].

The network management expertise can be modelled in
order to manage complex systems. With the WBEM
initiative, and more specifically with CIM schemas, a
unified method of gathering management knowledge is
born. The most important are the common models for the
entire management community.

Nonetheless, some questions on distributed
management system arise: how to deal with managed
resource heterogeneity? How to share this knowledge
between management systems? What about management
interaction?

We will present our solution CAMELEON platform
and some answers gained from our experience.

The CAMELEON1 platform is the result of a R&D
study, initiated by the French National Space Centre
(CNES2). CAMELEON (formerly known as Sumo:
SUpervision et Maîtrise des Opérations spatiales) was a
study done between Dec. 1999-June 2001[15]. It was
developed in collaboration with ALCATEL CIT and IRIT
laboratory. The objective is to manage large numbers of
complex space systems. Indeed, in space domain, space
ground segments systems have to manage an increasing
number of satellites (e.g. constellations of satellites). A
new approach is needed to reduce cost and increase
autonomy and automation of such complex systems.

The main requirements for the approach CNES wanted
to take with CAMELEON are the following:
? Homogenisation of management information systems,
? Improved competitiveness and durability of solutions

obtained, through the use of standard technologies for
the development of applications and for the
management of systems.

? Optimal factorisation and reuse (implementation of
generic "technical" or "task" components).

? High integration capability of legacy systems.
In order to achieve such requirements, CAMELEON

combines the three following standard technologies to

1 The term CAMELEON is an analogy to the animal.
2 Centre National d’Etude Spatiale

2/8

provide integrated, scalable management of heterogeneous
complex systems:
? The WBEM 3 initiative [3], especially the CIM 4 [4] as

a management information model,
? CORBA [5] as communication infrastructure,
? Java as development and prototyping language.

2. CAMELEON : A “Modelware” Platform

2.1. What is “Modelware” platform?

We propose the term “Modelware” that means: “if
something can be modelled, the modelware infrastructure
can be managed it”. This approach combines Software
Engineer [9] and Network Management ones . CIM
schemas are independently expressed regardless
middleware technologies (Platform Independent Model).
We propose this term “Modelware” to the French national
group OFTA [10].

CAMELEON platform is composed of management
knowledge and management entities (Object Managers-
OM). The management knowledge is modelled using CIM
(schema and instances). An OM has several functions in
order for it t o be processed (see Figure 1).

 Managed objects are abstracted from real managed
entities. In our platform, they are java objects gathered
together into a conceptual management database (called
management information base).

Object Providers (OPs) act as gateways between the
management system represented by OMs and the real
managed world (WBEM integration viewpoint). The CIM
management models give an uniform view of
heterogeneous management domains.

1

SUMO project
Software Engineering

Satellite1

State = “NOK”;
Altitude = 33000;
report(in date from);
dump (…);
…

GroundStation
Kiruna

State=“ON”;
sendTC(…);
Lock();
Unlock ();
…

VisibilitySatellite

State = “ON”;
…

VisibilitySatellite

OM
MIB

OMy

OP Satellite

Expert Models

Commands
(methods)

State
(properties)

Alt = Satellite1.getAltitude ();

OM
MIB

OMx

OBJECT
MANAGER

OP Unix
OP Unix OBJECT

PROVIDEROP Satellite
OP Satellite

OP SNMP
OP SNMP R

R
OP …

OP … …

Software Bus CORBA

Figure 1 : A distributed architecture driven by
CIM models

3 Web-Based Enterprise Management
4 Common Information Model

As represented in figure 1, any OM or OP is a CORBA
Object. In consequence:
? Inter-OMs communications use CORBA/IIOP.
? OM-OP communications use also CORBA/IIOP.

Any Object Manager has to offer and implement all of
basic management functions (such as CIM-objects mgmt
fct, Dependency mgmt fct, Historic mgmt fct, State mgmt
fct, Event mgmt fct), whereas additional functions are
optional and may be activated when starting the OM (such
as Security mgmt fct, Fault Tolerance mgmt fct). These
functions represent the executive part of this “Modelware”
approach. For more details, please see [6].

In order to illustrate this term Modelware, we shall
refer to the following analogy to explain it : CIM models
are the blood, CAMELEON platform is the heart !

2.2. CIM Management Knowledge Integration in
the CORBA platform

The management knowledge is originally fed to an
initialisation mof file, loaded thanks to our CIM parser.
Internal representations of CIM objects (classes, instances,
properties, methods…) are mapped to Java objects by the
CIM-API which is developed by Sun [8] (see figure 2).
Management functions provide data processing at the OM
level.

Schema &
instances

OM

Parser/Scanner
CIM-CIM API

MIB

Observer

Observable

Mgmt
FunctionsCIM

schema
&

instances

mof files

Figure 2 : Management Knowledge Integration

Since all communications between management entities
are done through CORBA, most of the information that
has to be exchanged is actually CIM information. First
mapping proposed from CIM to IDL thanks to which this
mapping, management objects (OM and OP) interfaces
stay simple. These interfaces are similar to traditional
management interface: get , set and invoke.

The mof descriptions of elements to be supervised are
spread within each distributed management entity.

Because all the management entities of the
CAMELEON architecture are CORBA objects, they can
communicate transparently and independently from the
location, the machine, the OS in which they are running.
However, management knowledge distribution introduce
issues that we consider in section 4.

In the following section, we will develop the ma jor
CIM modelling contributions and draw out modelling
issues .

3/8

3. CIM Contributions

The CAMELEON platform is the result of the SUMO
project lead in parallel with the DMTF works, during these
last three years. Some of CAMELEON contributions will
be summarized in this section.

The CIM meta-model and the mof notation can be
added at the meta-model level (see Figure 3).

CIM

CORE

COMMUN

Managed System Element

EXTENSIONS
Solaris

CAMELEONOMG_
Win32

Physique System Application…

…

Managed Element

mof

Legend : : Abstract
Notation

: Class

: Inheritance Relationship
: Dependency Relationship
: Component Relationship

: Meta-Model

Meta-Model level

Models level

SMI
(SNMP)

ASN.1

MIM
(CMIP)

GDMO

Figure 3: A conceptual Framework for Modeling

The added value of its common models framework is to
unify the network and system management modelling at
the Models level.

3.1. CIM schema extensions

In the CAMELEOM platform, the major CIM schema
extension was done in order to manage the CORBA
environment and CAMELEON itself. The schema name
CAMELEONOMG_ was created, however it must
eventually be replaced by the schema name CORBA_ (at
the Extension model level) if it is adopted by the OMG.
This work must to be compared to the new version of
Application Model [11].

Other extensions made are:
? some CIM classes in the Common mo del (these class

names are preceded by the CAMELEONCIM_
schema name),

? some classes needed by the CAMELEON
management entities (they were introduced by the
schema name CAMELEON_).

3.2. A new pattern for active dependency

Based on a management point of view, the semantics of
CIM_Dependency association class is strong. When we
specialize CIM_Dependency association, we define new
association classes. We can add properties and methods,
but we cannot specify how the Antecedent’s evolution
affects the Dependent.

For example, if a system (Antecedent) goes down, all
the hosted services (Dependents) must be affected.

Here, an event-action correlation should automatically
determine if the event “The Antecedent’s Status property
was updated” occurs, the action to perform is “to update
Dependent’s Status property”.

This example of Dependency correlation could be
translated in the class methods , however it should appear
as a static and implicit mechanism.

This requirement cannot be expressed by CIM_Action
and CIM_Check derived classes, because these classes
express the status change of instances of
CIM_ManagedSystemElement derived classes.

In order to simplify the designing and to reuse the
event-action correlation, we propose to define a new
object class CAMELEONCIM_ActionOnDependency
which specifies what event is waited, and what action
must to be performed when the event occurs. The
CAMELEONCIM_DependencyAction association links
dependency and action (see Figure 4).

CIM_Dependency

Antecedent : CIM_MSE
Dependent : CIM_MSE

CAMELEONCIM_Dependency
Action

1..1 0..*

CAMELEONCIM_ActionOnDependency

SourceType : string
SourceName : string

Figure 4 : “Action on Dependency“ pattern

The action CAMELEONCIM_ActionOnDependency is an
abstract class used to represent action on dependency. The
following properties describe the expected event:
? SourceType (an enumerated type that specifies wh ich

Antecedent’s element is watched: Property, Method or
InstanceOfClass),

? SourceName (name of element),
? SourceActionType (an enumerated type that specifies

the action on the element that throws the event:
Create, Delete, Update, Access, Before, After).

To specify the resulting action to perform on the
Dependent, we define several subclasses of the
CAMELEONCIM_ActionOnDependency class (see figure
5).

4/8

ActionOnDependency

SourceType : string
SourceName : string

InstanceAction

TargetType :string

MethodAction

TargetType : string
MethodName : string
TargetProperty : string
DependentTarget : boolean

PropertyAction

TargetType : string
TargetProperty : string

GaugePropertyAction

ValueStep : uint32

MethodPropertyAction

InvokedMethod : string
DependentMethod : boolean

PropertyValueMappingAction

SourceValue : uint32 []
TargetValue : uint32 []

PropertyToPropertyAction

UpdatingProperty : string
DependentProperty : boolean

AffectationPropertyAction

NewValue : string

Figure 5: The CAMELEONCIM_ActionOnDependency subclasses

The Dependent’s target element affected by the action
can be an instance, a property or a method. As the target
element, the action may be (enumerated TargetType
property):
? Delete, Lock5, Unlock6, Update7, Reset8 on an

instance,
? Set, Update, Reset on a property,
? Invoke, Lock, Unlock on a method.

? To update a property, several actions are identified:
? CAMELEONCIM_GaugePropertyAction

To increase or decrease a gauge (or a counter),
? CAMELEONCIM_PropertyValueMappingAction

For enumerated type property (such as status), a value
mapping between Antecedent’s and Dependent’s
properties can be identified.

? CAMELEONCIM_AffectationPropertyAction
A property is updated with a new value.

? CAMELEONCIM_PropertyToPropertyAction
A Dependent’s property is updated by the value of a
Dependent’s or Antecedent’s property.

? CAMELEONCIM_MethodPropertyAction
A Dependent’s property is updated by the return of an
invoked method.

See Example of mof
CAMELEONCIM_ActionOnDependency instanciation
between a System (Antecedent) and a Service (Dependent)
in figure 6.

5 The element is not accessible
6 The element becomes accessible
7 The value(s) of the element is (are) got from the real resource.
8 The value(s) of the element is (are) reinitialized by its default value.

The CAMELEONCIM_DependencyAction association
has to be instanced in order to link an instance of the
CIM_HostedService Dependency and this Action instance.

Instance of CAMELEONCIM_
PropertyToPropertyAction
{Name = “action1”;
 SourceType = 1; // Property
 SourceName = “CIM_System.status”; //
Name of the Antecedent’s property
 SourceActionType = 3; // Update
 TargetType = 1; // Set
 TargetProperty = “Status”; // Name of the
Dependent’s target property
 UpdatingProperty : “CIM_Service.status”;//
Name of the property which is used
 DependentProperty = false;
// The UpdatingProperty belongs to the
 Antecedent
}

Figure 6: Example of mof
CAMELEONCIM_ActionOnDependency

This ActionOnDependency model can be added to
schema and instanced into the MIB. It must automatically
be taken into account by the ActiveDepedency function
which is added to an OM regardless object location.

3.3. A global management point of view

Because of this model-driven approach, the power of
expression of a meta-model contributes to enhance the
management power.

5/8

CIM schemas and instances are abstractions of
managed domains. They represent the management
knowledge shared between management entities. We
situate them at a kernel level (see figure 7).

Thus, the technology level performs management
activities.

Management
Knowledge

CAMELEON
platform

VISUALIZATION

OM
MIB

OMy
OM

MIB

OMy
OM

MIB

OMy

Web technology

VISUALIZATION

 Figure 7: A global management point of view

Finally, graphical user interface tools are provided on

the visualization level, such as:
? The CIMWatch user interface . The CIMWatch user

interface is similar to a MIB browser. It presents all
management entities, their managed objects and their
data. An automatic refresh is accomplished by using
notification exchange.

? FTWatch. The FTWatch user interface visualizes the
Fault Tolerance organization between CORBA
objects when this function is activated. An automatic
refresh is accomplishedby using notification
exchange.

? Task Scheduling . The management application “Task
scheduling” manages the running of task planning
with Faul Tolerance and security. It combines the use
of all platform functionalities.

For the designing step the DMTF MOFEditor tool

could be used but this time no tools is provided to generate
mof files from classes diagrams. This is an important lack.

We continue investigation a CIM meta model in order
to add pre and port condition at the designing level.

4. Management Knowledge Distribution

In the CAMELEON platform, we have solved two
issues drawn out by management knowledge distribution.

4.1.1. A federated Naming schema
For the CAMELEON framework to function

transparently, independently of OMs and OPs locations, it

is necessary to define a strong and efficient naming
convention.

? When talking about object locations in
CAMELEON, we have to consider two levels:

? location of CORBA objects running as part of the
CAMELEON infrastructure (OMs and OPs);

? location of the CIM Objects (mapped to Java
objects within OMs).

? CIM Objects in the MIB need to be uniquely
identified and referenced for all of the
CAMELEON distributed system. Their naming is
based on two naming models :

? Symbolic name of the Object Manager having the
MIB, based on CORBA naming,

? Object path of the CIM object (i.e. namespace +
model path), based on CIM naming.

OM name
root/cnes_toulouse/supervision/om1

•
root /configuration /

security
•
root/configuration /

security
/clients

«cnes_toulouse»

«target » «supervision »
«om1 »

«configuration »
« root »

« security »
« security »

« clients »

« clients »

Federated naming context
CORBA Name Binding linked to a Name Space

Legend

«root1»

«root »

« configuration »

OM name spaces :

Figure 8: Example of federated symbolic name

By using this convention, any CIM instance can be
located anywhere in CAMELEON. To locate the OM
responsible for this instance, we look at the first part of the
instance identifier and then ask the CORBA naming
service to resolve the symbolic name.

There are some solutions to build federated naming
services, for instance using CorbaScript [9], but it is
always a complex operation. This CAMELEON service
proposes to configure and deploy it more easily, by
describing the configuration through CIM classes in the
schema.

CAMELEONOMG_CorbaAdminDomain

CAMELEONOMG_CorbaApplicationSystem

CAMELEONOMG_CorbaElement

CAMELEONOMG_FederatedDomains

*

*

CAMELEONOMG_DomainApplicationSystems

CAMELEONOMG_SubCorbaApplicationSystem

CAMELEONOMG_CorbaApplicationElement

Figure 8: Federated naming classes

6/8

For this, we defined a mapping between classes and
instances of the CIM model and the organisation of
federated naming services. Part of the CORBA model used
in this mapping is presented in figure 8:
? CAMELEONOMG_CorbaAdminDomain maps to

roots of naming services,
? CAMELEONOMG_DomainApplicationSystem maps

to context bindings between the root context and any
sub-context,

? CAMELEONOMG_CorbaApplicationSystem maps
to naming contexts excepted the root one,

? CAMELEONOMG_SubCorbaApplicationSystem
maps to bindings between contexts, except the root
ones,

? CAMELEONOMG_CorbaApplicationElement maps
to object bindings within naming contexts.

? Finally, CAMELEONOMG_FederatedDomains maps
to federation contexts and all the bindings to other
root of other naming services.

When the CAMELEON Object Manager starts with the
Federated Naming Service activated, it reads its MIB and
builds the naming service (contexts, sub-contexts and
context bindings) and the federation with other naming
services (cross-bindings between federation contexts and
root contexts for each naming service).

Advantages of naming services federation
are numerous: scalability, performances, better fault
tolerance, local control…

4.1.2. An external Notification Service-based exchange
Receiving no-solicited event between management

entities is mandatory within a management platform.
 This requirement concerns events occurred on

managed entities represented by objects within a MIB.

Event Channel

Notify fct

Supplier
Admin

Consumer
Admin

Proxy
Consumer

I

D

L

Push

FiltresCORBA
Filter

FiltresCORBA
Filters

FiltresCORBA
Filters

OM

Client 1

Client 2

QoS

Communication mode

I
D
L

Consumer
Admin

Proxy
Supplier

Proxy
Supplier

SUPPLIER CONSUMER

I
D
L

I
D
L

1

2

FiltresCIM_
Indication

Filter

Figure 9: Implementation of Notification
functionality

CIMv2.5 models these events as instances of
CIM_Indication classes and the subscription mechanism
by specifying the following classes: CIM_IndicationFilter,
CIM_IndicationHandler and the association
CIM_IndicationSubscription.

A supplier/consumer service is required to implement
external CIM_Indication exchange between any
management entities running on the platform (OM
management functions, Visualization application). This
requirement is supplied in CORBA by the Notification
Service. The CORBA product “ORBacus Notify Service”
was chosen because it offers filtering mechanism and QoS
parameters [7]. This service allows objects to supply
asynchronous events to consumer objects through event
channels.

Several choices have to be done concerning the event
channel, such as :
? Event channel configuration : the parameter

EventReliability is selected for event persistency
and the parameters ConnectionReliability and
OrderPolicy for connection persistency,

? Event type : “Structured Event” in order to
manage filter QoS,

? Event channel filtering : at both Supplier and
Consumer sides in order to limit event traffic,

? Communication mode : push supplier -
push.consumer.

Some implementation details are represented in figure
9. Each OM has a Notify function that creates both
Supplier Admin and Proxy Consumer CORBA
objects. A client has to create both Consumer Admin and
Supplier Proxy objects to perform Consumer role.

Two IDL interfaces were defined :
? the Notify function interface (an extract is done in

figure 10), and
? the NotifyObserver interface (see figure 11).
interface Notify_Mgt {
// Types of events that this interface knows
enum EventType {
 INITIALIZATION, // MIB has been initialized
 ACCESS, // object has been accessed in MIB
 CREATE, // object has been created in MIB
 UPDATE, // object has been updated in MIB
 DELETE // object has been removed from MIB
 };
typedef sequence < EventType >
SeqEventType;
// Types of objects that events can apply to
enum ObservableType {
 MIB, // Event pertains to the MIB as a whole
 CLASS, // Event pertains to a StructCIMClass
 INSTANCE,// Event pertains to a StructCIMInstance
 PROPERTY,// Event pertains to a StructCIMProperty
 METHOD // Event pertains to a StructCIMMethod
 };
// Filter

7/8

 //pathFilter : name of class, object path of class,
 // object path of instance or ""
 struct Filter {
 string pathFilter;
 ObservableType typeObservable;
 string nameMethodOrProperty;
 SeqEventType eventTypes;
 };
 typedef sequence <Filter> SeqFilter;
...
 // Name of Event Channel in Naming
Visibroker
 typedef string NameEventChannel;
//Useful Informations for the creation of Consumer
struct SubscriptionResult{
SubscriptionID uidofSubscription;
//uid of Subscription
 NameEventChannel eventChannelName;
 };
 typedef sequence <SubscriptionResult>
SeqSubscriptionResult;
SubscriptionResult subscribe(in string
nameClient, in Filter filter); ...}

Figure 10: Extrat of Notify function interface

public void push_structured_event
(StructuredEvent event)

Figure 11: IDL NotifyObserver interface

Finally, Figure 12 summarizes the mapping done
between IDL filter/CORBA filter/CIM_IndicationFilter.

pathFilter

typeObservable
nameMethodOrProperty
eventTypes

pathFilter ? « Toto »
typeObservable ? « Instance »

nameMethodOrProperty ? « »
eventTypes ? {CREATE,DELETE}

Select
Type CREATE AND DELETE

From Toto
Select… Type … From

Champs filtrés :Filtered fields :
EventType,

ObservableType
,

PathFilter,

NamePropertyOrMethod.

Constraints for each filtered field
($EventType = =‘ CREATE ’) and

($ EventType == ‘DELETE ’)
($ObservableType == ‘ Instance ’)
($PathFilter = = ‘Toto’)
($NamePropertyOrMethod == ‘ ‘)

Filter

IDL

Filter

CIM

Filter
CORBA

Note : the symbol ‘$’ is defined in the CORBA filter grammar to indicate a
filterable field of the current Structured Event

Figure 12: IDL filter/CORBA
filter/CIM_IndicationFilter. mapping

CIM_Indication classes had to be specialized just in
order to override name property by adding the qualifier
“key”.

5. Conclusion and Issues

The CAMELEON platform proposes a global and
distributed approach to manage large and heterogeneous
systems. This is made possible thanks to the maturity of
object technologies and standards [12] .

Some work has been done on CORBA management,
and results are promising though tests we made are still
applied to a limited number of entities. CAMELEON is
already able to offer some services that can hardly be
found in current ORB products, especially security and
fault tolerance. Moreover, CAMELEON makes using and
configuring these services for any CORBA application
simpler than usually because of the use of the CIM
modelling and instantiation.

Future works will be looking at the advantages of using
CAMELEON as a framework for integrating services,
especially services addressing CORBA and CORBA
objects.

CAMELEON is an attempt to enlarge the WBEM/CIM
management approach to more complex systems such as
Space systems. We pursue some work in order to get
CAMELEON infrastructure used for space constellations
management. This is in these complex and large domains
to manage that we will see all of the advantages of using
CORBA as our communication framework.

The potential web opening is a new way to ensure
interoperability and cooperation between management
entities.

We follow our investigation on 2 directions:
? End-to-End QoS for wide distributed CORBA

environments [13], and
? Web management services.

6. Acknowledgements

We would like to thank all the persons that worked on
the CAMELEON project. In addition to the co-authors,
they are :
? CNES agency : Florent Maisonneuve;
? Alcatel CIT: Philippe Link, Nicolas Avis, Kristelle

Lassagne, Laurent Babarit, Patrick Jimenez;
? Communication & System: Alain Roussel ;
? ATOS ORIGIN, Dominique Benech;
? IRIT laboratory: Pr Yves Raynaud, and
? Members of the national META group

7. References

[1] JSMAN: an open source Java-based Framework for
Seamless Integration of equipment, network and service
management paradigm.
http://www.loria.fr/equipes/resedas/JSMAN/

8/8

[2] GEMINI : A Generic Environment for Management
INformation Integration. Anne-Isabelle Rivière. European
Doctorate Thesis - Paul Sabatier University - Dec 1997
[3] WBEM Initiative – Distributed Management Task Force
(DMTF) http://www.dmtf.org/wbem/index.html
[4] Common Information Model (CIM) Specification –
Distributed Management Task Force (DMTF) – Version 2.2 – 14
June 1999
[5] The Common Object Request Broker: Architecture and
Specification – Object Management Group (OMG) – Version
2.3.1 – October 1999
[6] "Supervision of the CORBA Environment with
CAMELEON: a WBEM/CIM -Based Management Framework”,
Bénech D., Jocteur-Monrozier F., Rivière A.-I. International
Symposium on Distributed Ojects and Applications (DOA’ 00).
Antwerp, Belgium, September 2000.
[7] ORBacus otification service. www.ooc.com
[8] Solaris 8.0 Operating Environment WBEM – Sun –
http://www.sun.com/solaris/wbem/
[9] Model Driven Architecture. Ormsc/2001-07-01. July 9,
2001.
[10] OFTA, www.ofta.net
[11] Towards a CIM Schema for RunTime Application
Management. A.Keller, H.Kreger and K.Schopmeyer.
DSOM’2001 workshop, 15-17 october, 2001 – Nancy, France.
[12] " Les technologies orientées objet au coeur des systèmes de
gestion : modélisation, organisation et répartition " Jocteur-
Monrozier F., Benech D., Sibilla M. and A.-I. Rivière. Electronic
Journal on Networks and Distributed Processing , V. 11 , p. 211-
227. Mars 2001. Accès: http://rerir.univ-pau.fr/rerir2.html
[13] ”CORBA QoS Management with CIM/WBEM ”, Barros
A., Sibilla M., Jocteur-Monrozier F. Workshop on Real-Time
and Embedded Distributed Object Computing , June 4-7, 2001.
Herndon, VA USA
[14]" Global System Management with Standard Object Oriented
Technologies" Rivière A.-I, Sibilla M. and Jocteur-Monrozier F.,
DAta Systems In Aerospace conference (DASIA), (Canada),
May , 2000, http://www.eurospace.org/
[15] www.irit.fr/SUMO

