
Behaviour modelling : a contribution to CIM

M. Sibilla, A. Barros de Sales, J. Broisin, P. Vidal F. Jocteur-Monrozier

Institut de Recherche en information de Toulouse (IRIT),
Paul Sabatier University, Toulouse – France

Centre National d’Etudes Spatiales (CNES)
Toulouse - FRANCE

{sibilla, broisin, barros, vidal}@irit.fr francois.Jocteur-Monrozier@cnes.fr

Abstract

From an informational management point of view,

a class schema is a static representation in so far as it
doesn’t model behaviour of managed system elements.

Our approach aims at selecting works achieved by
the Software Engineering domain (OMG/UML) so as
to reach universal understanding : concretely, we
defined an UML profile for CIM class modelling and
we have used the OMG/UML Statechart diagram for
modelling behaviour and generate code. We also
design an active CIM_Dependency pattern, which
simply describes behavior between managed elements
of different classes such as executing actions from
event occurrence.

We give an overview of mechanisms in order to
support and deal with these behaviour descriptions in
a distributed management environment. We conclude
on the benefits of modelling behaviour, which result
from our experimentations with our CORBA-based
management platform-called Cameleon.

1. Introduction
From an informational management point of view, a
class schema is a static representation in so far as it
doesn’t model behaviour of managed system elements.
In the CIM core and common models, the CIM_Action
Application schema alone models an installing process
which can be automated.
Moreover, in management architectures, Event
modules generally have their own specific models to
express resulting actions to invoke when some types of
events occur. We can’t but regret its being
uncorrelated to the class schema.
The Management domain suffers from a lack of design
tools regarding Informational point of view. So, a
conformance to Software Engineering standards leads
us to use a common approach, common tools and gives

us a common understanding of static and dynamic
management knowledge.
Our approach aims at selecting works achieved by the
Software Engineering domain so as to reach universal
understanding. Following on from the CIM
OMG/UML class diagram standard use, we have
chosen to integrate the OMG/UML Statechart diagram
for modelling behaviour.
This document is organized as follows:
The first part identifies the abstract elements of the
Core model which are involved in modelling
behaviour. Secondly, we focus on modelling Object
behaviour by integrating UML Statechart diagrams
into CIM. The third part deals with the behaviour
among object classes. Finally, we give an overview of
how we have implemented our approach in our
distributed management platform, called
CAMELEON.

2. Abstract elements of Behaviour
modelling

Resting on the CIM common model which describes
some static semantic knowledge of the managed world,
we have retrieved the basic elements so as to model
some behaviour knowledge (see figure 1).

Managed Object/Class
Managed objects all derive from
CIM_ManagedSystemElement class. Before the CIM
model 2.7 preliminary version was released, this class
had a SINGLE “state” propriety (Status), which
management requires as a priority piece of
information. Its updating may result from invoking a
method of its class, from an action or else from an
external event.

Event
An event is an instance of the CIM_Indication class. In
the network management domain, the importance of
events (Alarm type for example) has been underlined
in the very CIM meta-model (Class derived
Indication). A specific inheritance graph derived from
the CIM_Indication root class is defined in the Core
and Common models. Subscribing and filtering
concepts are specified in [1]. Indications may concern
either the schema life cycle (ClassIndication: create,
delete, update), or class instances life cycles, or else
alert notifications (complex events or at a higher level
issuing from a set of events) coming from managed
objects or from an external source (instrumentation or
integration intermediary).

Action
An action corresponds to an operation to be invoked
on an element of the common model. The actions we
first wish to be able to specify are: Creating or deleting
an instance, Updating a property, and Invoking a
method on a particular instance.

Extracted from the CIM Meta Model

NamedElement

Class

Association Indication

CIM_ManagedElement

CIM_ManagedSystemElement
OperationalStatus
Status

ElementName

CIM_DependencyCIM_Component

CIM_Dependency
Antecedent : REF
Dependent : REF

CIM_Indication

M
et

a
M

od
el

In
te

r D
om

ai
ns

C
om

m
on

 M
od

el
s

Legend: : CIM Class : Standardized specification : Based on

: Inheritence : Aggregation relationship : Dependency relationship

Extracted from
the CIM Core Schema

CIM_Component
GroupComponent : REF
PArtComponent : REF

Figure 1 : Basic elements of Behaviour modelling

The behaviour knowledge we aim at formalizing so as
to automate its management deals with managed
objects –management abstraction of managed entities:
we wish to express their change of “state” conditions
as well as their behaviour during those changes and the
behaviour influence among managed objects based on
the Dependency relationship.

3. Objects behaviour

3.1 Existing work
As far as management is concerned, we first focus on
the state of managed entities. It represents the
operational condition of the managed entity at a given

time. As regards the OSI management [2], the global
state of an entity is the combination of three states,
namely:
▪ the Operational state which has two possible

values : enabled, disabled,
▪ the Usage state which has three possible values :

idle, active, busy and
▪ the Administrative state which has three possible

values : unlocked, locked, shuttingdown
Some rules have been graphically specified to
informally standardize those states combinations and
transitions.

The work achieved by O. Festor on objects behaviour
and relationships formalization, along with
EUROCOM Institute’s, have highly contributed to the
expression of the GDMO standardized information
model using SDL’92 [3, 4, 5].

However, both the advent of the Unified Modelling
Language -UML (especially here, its Statechart
diagram) and the CIM common management models
have led us to study a new combinatorial approach.

For the moment, in the CIM 2.7 preliminary version,
some major experimental modifications are proposed.
The OSI states management logic cannot be found
directly and we are baffled at its management. As a
matter of fact, the
“CIM_ManagedSystemElement.OperationalStatus”
and “CIM_Enabled LogicalElement.Enabled Status”
properties are proposed (whereas the more general
property “CIM_ManagedSystemElement.Status” is
depredicated).

In accordance with the UML statechart diagram, our
work has focused on a single state whose expression
we wished to formalize so as to enrich the common
abstraction model.

3.2 Integrating UML Statechart diagram
into CIM

We are aiming at describing the behaviour of an object
based on all its possible states. According to its state,
certain methods will be available on the object or not,
some code invoking will be possible during states
transitions.

Our goal is to be able to specify “behaviour” through
UML Statechart diagrams according to the following
principles:
▪ by associating a Statechart diagram to a class,

when possible

▪ by managing the states and possible transitions
among those states

▪ by executing some code on pre-invoking and post-
invoking a method or on entering and exiting a
state

▪ by forbidding or ignoring certain methods
depending on the object state

Specific grammar has been defined to have a textual
representation of the UML Statechart diagrams so as to
be able, then, to generate some code from those formal
descriptions.

Such behaviour modelling will ensure security
improvement (control) and will entail automated –and
thus- more secure code generation. Besides, the
graphical aspect of the diagrams cannot but make
understanding easier, which will in turn improve the
transition from specification to design and
implementation.

The states automates descriptions for a set of classes
can be regrouped into a single state file or placed into
separate state files. This file abides by strict
grammatical rules (referencing in Figure 2), which
propose some labels for describing a states automate
for the class under consideration [6].

3.3 Description of the Statechart Grammar

The “action” label makes the listing of all the methods
available on the relative CIM class possible and must
be filled in. True enough, this is redundant with the
CIM class methods definition, but it has been
introduced so as to ensure independent tools handling
CIM models and statechart diagram descriptions.
Specific libraries can be integrated into the automate
description code thanks to the “import” label. Each
state is preceded by the “state” tag which defines the
state description block. Within a state, some methods
can be ignored by using the keyword “ignore”. When
entering and exiting a state, some specific code may be
executed thanks to the labels “on enter” and “on exit”.
Before and after invoking a particular method, some
code may be invoked by using the keywords “on pre-
invoke” and “on post-invoke”. This grammar also
permits to define transition conditions between two
states thanks to the keyword “transition”.

Using Java code enriches our approach with an open
processing, namely: method invoking on instances of
the repository, Java specific code …

Class <MOName> {
actions (« methodIgnored1», ...)
import (a Package.aPackageX.* ;)
properties(« prop1», « prop 2», …)
set ({« prop1» , « param1»} , {« obj1.prop1» , « param1»} ,

{« classe1:asso1:prop1» , «param1»} , …..) ;

state <StateName> {
ignore (« methodIgnored1», ..) ;
on enter { do: an action; } ;
on exit { do: an action; } ;
on pre_invoke(« a methodId») { do: an action; } ;
on post invoke(« a methodId») { do: an action; } ;
on exception (« a methodId» , « an exception») { do: an action; } ;
access (« prop»,TYPE_ACCESS) ;

transition (« state Y») {
on at_event(«a method» ,«jj/mm/aaaa hh:mm:ss») [, condition(…..)] { do: an action; } ;
on call_event(« a method») [, condition(«java codereturninga boolean»)] { do: an action; } ;
on change_event(« Exp Boolen java») [, condition(…)] { do: an action; } ;
on signal_event(« a Event_Type» [, « propX=value1»,…]) [, condition(…)] { do: an action; } ;
on time_event([«method»,] « durée») [, synchro(« synchro StateName»)] { do: an action; } ;

}
} // fin de state

state_synchro <StateName> (« tostateY») {
loop (laptime) ;
condition ({ java code returning a boolean}) ;
// then idem a normal state

} // fin de state_synchro

transition (« fromstateX», « tostateY») {condition(« a condition ») } //compatibilité ascendante

List of method that
can be used

Import a Package

List of properties for witch
the access right can be changed

State
Description

List ofmethod
to ignored

5 types of
event

possible

Action or Condition
description

5 types of
transition

event
possible

Condition or
Synchronisation

Action or
Condition
description

Declaration of
the parameters

Definition of
the access
right

Pseudo-state
description

Figure 2: Principle of the description grammar of Statechart diagram

Advanced extensions
All the possibilities of the UMLv1.4 Statechart
diagrams have not been taken into account in this
proposal. However, we are now adding a few
extensions (presenting in Figure 3) whose
implementation requires the following management
functions:
▪ Event management function (exception or

CIM_Indication),
▪ Time management function, and
▪ The instance distinguished naming in a distributed

context.

On entering a state, a timer can be triggered and an
action can be executed after pre-defined period of time
(Time Event in UML) thanks to the keyword “after”.
Within a state, an exception occurring after some
method invoking on an object (an event such as
“Signal Event” in UML) may be mentioned thanks to
the keyword ”on exception” defining the expected
exceptions.

Taking into account external events (such as
CIM_Indication) which happened on other objects is
interesting in our management context, for it meets
with the concerns of behaviour macro-modelling.
Capturing this type of events might aim at being able
to specify some behaviour due to be found for a given
state of an object on an event occurring.

Thanks to this grammar, we are able to associate a
Statechart diagram to each class of the CIM model
(derived from CIM_ManagedSystemElement). The
presence of a state file associated to a class is signalled
by a new “state” qualifier defined as follows:

Qualifier State: Boolean = false, Scope(class),
 Flavor(DisableOverride,Restricted) ;

This grammar may be enriched so as to meet the
statechart diagram designers’ and users’ needs. The
strength of this diagram lies in its sheer formalism
which makes it accessible to all.
State combination is still to be taken into account in
this proposal.

4. Behaviour correlation among objects

4.1 Existing work

Initially, OSI management function “Attributes for
representing relationships” defined a set of
relationships specific to the OSI context. The “Generic
relationship model” model has completed the first
modelling without helping with any other purely
functional aspects [7]. Modelling semantic links
among managed objects refines management
knowledge when solving problems or facing Alarm
reporting. Nevertheless, if we are able to model and
then to automate some part of the management
expertise dealing with influence and behaviour
dependency among entities, we will improve
automation in controlling and correcting critical
situations. In [8], specifying and classifying these
relationships as well as dealing with them separately
help improving the management functionality of
anomalies. Nevertheless, modelling these relationships
does not express any action to be executed facing some
relevant triggered event.

CIM meta-model defines the Association concept to
represent some semantic relationships among object
classes. The stress is more particularly put on a
composition relationship (CIM_Component) and on a
dependency relationship (CIM_Dependency) in the
Core model.

Our first investigation consisted in expressing and
implementing some dynamics on dependency
relationships, which behaviour influence stems from.

4.2 Active dependencies: a new pattern

A dependency relationship links together two object
classes at least: one of them is identified as Antecedent
and the other as Dependent. For readability’s sake, we
will use the English words Antecedent and Dependent
throughout the paper to name the instances they refer
to.

We wish to be able to express the link between an
event occurring on an Antecedent instance and an
action to be taken on the Dependency instance. This
possibility must on no account modify the
CIM_Dependency class since this class is defined in
the CIM “Core” model in an abstract way. The action
to be taken necessarily implies some elements
(property, method,…) from the classes referred to by
Antecedent and Dependent. Our contribution consists
in specifying the different kinds of actions to be taken
depending on the ”target” element of the Antecedent
instance.

Figure 4 presents an extract of the inheritance graph of
the actions which can be expressed and associated to
any relationship deriving from the CIM_Dependency
class. The CIM_Dependency class links two instances
of the CIM_ManagedSystemElement class -
“Antecedent” and “Dependent” - related to each other.
The ActionOnDependency action is an abstracted class
from which all possible actions to specify on a
Dependency are derived. This generic action has three
properties common to any action: its name (name), the
language describing the selection query, and the
selection query of the relevant event, raised by
Antecedent.
The DependencyAction Dependency relation
references an instance of the CIM_Dependency class,
and the ActionOnDependency action associated with
this Dependency. Several actions could be associated
with an Active Dependency.
To illustrate our approach, let us take the two classes
CIM_System and CIM_Service. There is a dependency
relation on which we can express an action relating to
a CIM_InstIndication event (see Figure 4).
An example of action we can express (and, implicitly,
manage automatically) is given on Figure 5.
This action consists in ensuring a mapping of property
values between Antecedent and Dependent. Here, the
query specifies the event starting the realization of the
action, namely: every update of a CIM_System
Antecedent instance having its OperationalStatus state
modified in “Aborted”. This action can be associated
with each CIM_HostedService Dependency instance
for which an automation is required.

Instance of PropertyValueMappingAction {
Name= “AoD”

Query= ”SELECT *
FROM CIM_InstModification
WHERE SourceInstanec ISA CIM_System AND

SourceInstance.OperationalStatus == 15 OR …

TargetProperty = “OperationalStatus ”;

SourceValue : {15, …}; // Aborted
TargetValue : {15, …}; // Aborted}

”

QueryLangage = “WQL” ;

Figure 5: An example of Action associated with an
Active Dependency

Thus, the opening of WQL queries [9] “SELECT…
FROM… WHERE…” leads us to consider general
events (CIM_InstIndication instances) and to express
consequent correlations and actions from designing
phase. Based on the mechanisms defined in CIM
Event, this query allows to create a filter in the
manager responsible for the Antecedent object to
subscribe with the reception of these events.

5. Implementation

CAMELEON [10] is a management platform for

complex systems, resulting from a R&D project named
SUMO - SUpervision et Maîtrise des Operations -
carried out in collaboration by CNES, IRIT and
ALCATEL CIT.
The components of the CAMELEON architecture are
those of the WBEM architecture suggested by the
DMTF [11], in which Management functions are
implemented like they are defined in OSI Management
[12].

CIM_Service

uint16 OperationalStatus[];

CIM_System

uint16 OperationalStatus[];

CIM_HostedSystem

CIM_HostedSystem

uint32 [] SourceValue;
uint32 [] TargetValue;

DependencyAction

PropertyAction

uint16 TargetType;
string TargetProperty;

ActionOnDependency
string Name:
string QueryLanguage;
string Query;

PropertyValueMappingAction

uint32 StartService();

ManagedElementManagedElement classesclasses DependencyDependency andand Action classesAction classes Indication classesIndication classes

string PreviousInstance;

CIM_InstIndication

string SourceInstance;

CIM_Indication

string IndicationIdentifier;
string CorrelatedIndications[];
datetime IndicationTime;

CIM_InstModification

MethodAction

uint16 TargetType;
string MethodName;
string[] Arguments

CIM_System REF Antecedent;
CIM_Service REF Dependent;

CIM_Dependency

QUERY =
Expected
indication

Figure 4: Active Dependency Pattern and Inheritance tree of ActionOnDependency class

Thus, there are not, within our architecture, dedicated
or centralized components. It is a distributed
organization of the management applications which
introduces the concepts of Object Manager and Object
Provider. In our architecture, any manager has a
repository containing class descriptions and instances.
These management information are:
1. Either instrumented by gateways towards

heterogeneous management modules.
2. Or treated by management functions associated with

the manager.

5.1 State Management

States description is established in a pre-defined
formalism, a specific grammar which describes states
diagram by means of keywords. It is held in a “state”
file. A parser is then applied to the file and generates
the corresponding java class which may be compiled.
For example, before and after invoking a specific
method, some code may be invoked by using the
keywords “on pre-invoke” and “on post-invoke”.

Booked

Diagrammes d’états

Disabled

LEOP

NominalDégradé

UML statechart
génération

de code

Archive Java
(jar)

State.jar

(1)

(2)
(4)

(3)

Booked

Diagrammes d’états

Disabled

LEOP

NominalDégradé

UML statechart
génération

de code

Archive Java
(jar)

State.jar

Booked

Diagrammes d’états

Disabled

LEOP

NominalDégradé

UML statechart

Booked

State Diagrams

Disabled

LEOP

NominalDégradé

UML statechart

State files
grammar

génération
de code
code

generation

Archive Java
(jar)

State.jar

Java Archive
(jar)

State.jar

(1)(1)

(2)(2)
(4)

(3)(3)
Figure 6 : Functional description of the State

management fuction
(1) : method invocation to an object within the

repository of an object manager
(2) : execution of the related pre-invoke
(3) : execution of the invoked method
(4) : execution of the related post-invoke

Within Object Manager, some transparent redirecting
mechanisms enable us to redirect method invocation
on “State” qualified objects to the state management
function. Thus, by using Java typical reflection
mechanisms, the state management function executes
the code corresponding to the context of the concerned
object (state value, invoked method, pre-invoke …)

5.2 A Management Function for Active
Dependencies

Instances of ActionOnDependency class are treated by
the Relation Management function (of Dependency,
for the moment) in the following way:
• Searches for all instances of the DependencyAction

class and subscribes to event triggering by
Antecedent object, regarding the “query” element
specified in each action.

• Waits for any event. When an event is received, this
process searches for actions to be executed on the
associated Dependent instance depending on the
type of event (update, access …) and on the
concerned Antecedent instance.

Active Dependencies management function is a basic
function of any manager. It is therefore implicitly
instanciated within any manager. Any active
Dependency managed by a manager must be described
in this manager repository abiding by the grammatical
rules associated with Active Dependencies. It will be
possible to execute an action on the referenced
dependent element(s) after each selection of pertinent
event.
Each Dependency instance binds two instances of
classes being able to belong to various managers.
Thus, for each Dependency instance, the management
function will subscribe to each manager by creating a
filter starting form the query expressed in the
associated action. This function thus automates the
initialization phase of the peer to peer “Push” model
between managers responsible for the Dependencies
and those responsible for the Antecedent referred in
the Dependency relations.

6. Conclusion

On the basis of a meta-model and of universal models
for network and services management engineering, we
have contributed to the formal expression of both
object behaviour knowledge (through the integration
of UML Statechart diagram into CIM) and behaviour
correlation among objects through modelling active
dependencies.
Our contribution on the behavior modeling of CIM
classes brings an answer based on a standardized
approach broadly adopted by the Community of
Software Genius. From experimentations, we can say
that these statechart descriptions reduce code lines by 3
(classical program length has 1300 code lines rather
than the corresponding state file length has 200 + 300
lines). Moreover, these descriptions are readable,
extensible and “customizable”. We also have possible
code generation from diagrams. By using state
machine diagrams, we can automate test step or make
simulation.

These approach was extended by the definition of an
Active Dependency pattern making it possible to
specify a Management expertise between different
objects easily. From its generic character
(CIM_Dependency) and the initialization of a query
language to express a selection of relevant events, we
offer the elements to initialize the “Push” model
between managers and to automate it.
Nevertheless, with opening as well as design and
implementation flexibility in mind, both contributions
complement each other.

10. References

[1] DMTF DSP0107. “CIM_Event Model White Paper”.
Version 2.6. March 2002
[2] IS 10164.2 ISO/IEC “OSI Management : State
Management Function”. Juin 1993
[3] S. Tata, L. Andrey, and O. Festor. “A practical
experience on validating gdmo-based information models
with sdl'88 and '92”. In SDLForum'97, September 1997.
[4] E. Nataf. “Contribution à la spécification et à
l'exploitation des relations entre objets de gestion de
réseaux”. PhD thesis, Thèse de l'Universitè H.Poincarè-
Nancy I, France. octobre 1998.
[5] D. Sidou, S. Mazziotta, and R. Eberhardt. “TIMS : a
TMN-based Information Model Simulator, Principles and
Application to a Simple Case Study”. Sixth Int. Workshop on
Distributed Systems : Operations and Management,
IFIP/IEEE, Ottawa - Canada. 1995
[6] M. Sibilla, D. Marquie, A. Barros de Sales.
“Automatisation d'expertise de gestion: Intégration de
descriptions formelles du comportement au modèle universel
statique”. Colloque francophone de Gestion de Réseaux Et
de Services. Mars 2003.
[7] ISO/IEC IS 10165-7. “OSI Management : Generic
Relationship Model”. 1996
[8] Keller et al. “Dynamic Dependencies in Application
Service Management”. International Conference on parallel
and Distributed Processing Techniques and Applications.
Las Vegas, NV, USA, June 2000
[9]DMTF DPS 0104. “WBEM Query Language” (Draft)14
June, 2000
[10] Sibilla M., Barros De Sales A., Desprats T., Marquié D.,
Steff Y., Jocteur-Monrozier F., Rivière A-I.: “CAMELEON :
A CIM Modelware platform for distributed integrated
management”. The Annual DMTF Developers' Conference
(Academic Alliance Contest winner). San Jose, 2002.
[11] Thompson J.P.: Web-Based Enterprise Management
Architecture. IEEE Communications Magazine, No. 3 (1998)
80-86
[12] ISO/IEC 10164. “Information Technology. Open
System Interconnection. System Management”. Parts 1 to 21.

